广义热弹性扩散下非等径颗粒的烧结驱动力分析

张龙 张晓敏 郑恒伟

张龙, 张晓敏, 郑恒伟. 广义热弹性扩散下非等径颗粒的烧结驱动力分析[J]. 粉末冶金技术, 2019, 37(4): 259-263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.004
引用本文: 张龙, 张晓敏, 郑恒伟. 广义热弹性扩散下非等径颗粒的烧结驱动力分析[J]. 粉末冶金技术, 2019, 37(4): 259-263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.004
ZHANG Long, ZHANG Xiao-min, ZHENG Heng-wei. Analysis on sintering driving force of unequal-sized particles in generalized thermoelastic diffusion[J]. Powder Metallurgy Technology, 2019, 37(4): 259-263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.004
Citation: ZHANG Long, ZHANG Xiao-min, ZHENG Heng-wei. Analysis on sintering driving force of unequal-sized particles in generalized thermoelastic diffusion[J]. Powder Metallurgy Technology, 2019, 37(4): 259-263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.004

广义热弹性扩散下非等径颗粒的烧结驱动力分析

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.004
基金项目: 

重庆科技学院校内科研基金资助项目 ck2017zkyb020

详细信息
    通讯作者:

    张龙, E-mail: longzhang@cqust.edu.cn

  • 中图分类号: TF124

Analysis on sintering driving force of unequal-sized particles in generalized thermoelastic diffusion

More Information
  • 摘要: 在广义热弹性扩散理论框架下建立非等径两颗粒系统三维有限元模型,研究颗粒系统温度场和浓度场的分布规律,分析场分布对脉冲电流烧结初期迁移驱动力的影响。结果表明,颗粒颈部空位浓度梯度、温度梯度、由温度场和应力场产生的浓度梯度是颗粒颈部物质迁移的共同驱动力。烧结颈部的温度会产生两次突变,烧结过程中小颗粒一直保持高温状态;温度变化会引起浓度改变,使得颈部浓度高于边缘浓度;热扩散占总扩散通量的2/3,浓度扩散占1/3,因此烧结颈部的热扩散驱动力和浓度扩散驱动力是脉冲电流烧结过程的主导驱动力,提高热扩散能力和浓度扩散通量可显著提高烧结过程驱动力。非等径颗粒的烧结驱动力远远大于等径颗粒,为非等径颗粒的烧结比等径颗粒更为迅速提供了理论依据。
  • 图  1  非等径两颗粒模型

    Figure  1.  Double unequal-sized spherical model

    图  2  不同时刻颗粒颈部温度和浓度云图:(a)、(c)4.3×10-5 s温度云图;(b)、(d)4.5×10-5 s温度云图;(e)4.3×10-5 s浓度云图;(f)4.5×10-5 s浓度云图

    Figure  2.  Temperature and concentration nephograms of the particle neck at different times: (a), (c) temperature nephogram at 4.3×10-5 s; (b), (d) temperature nephogram at 4.5×10-5 s; (e) concentration nephogram at 4.3×10-5 s; (f) concentration nephogram at 4.5×10-5 s

    图  3  扩散通量与颈长率关系:(a)空位扩散;(b)热扩散;(c)浓度扩散

    Figure  3.  Relationship between the diffusion flux and the neck/particle radius ratio: (a) vacancy diffusion; (b) thermal diffusion; (c) concentration diffusion

    图  4  扩散通量比值与颈长率关系

    Figure  4.  Relationship between the diffusion flux ratio and the neck/particle radius ratio

    图  5  总扩散通量比值与颈长率关系

    Figure  5.  Relationship between the total diffusion flux ratio and the neck/particle radius ratio

  • [1] Antou G, Guyot P, Pradeilles N, et al. Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina. J Mater Sci, 2015, 50(5): 2327 doi: 10.1007/s10853-014-8804-0
    [2] Hulbert D M, Anders A, Andersson J, et al. A discussion on the absence of plasma in spark plasma sintering. Scr Mater, 2009, 60(10): 835 doi: 10.1016/j.scriptamat.2008.12.059
    [3] Roetzel W, Putra N, Das S K. Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int J Therm Sci, 2003, 42: 541 doi: 10.1016/S1290-0729(03)00020-6
    [4] Nowacki W. Dynamical problem of thermodiffusion in solids Ⅰ. Bull Acad Polon Sci Sér Sci Tech, 1974, 22: 55 http://www.ams.org/mathscinet-getitem?mr=353792
    [5] Nowacki W. Dynamical problem of thermodiffusion in solids Ⅱ. Bull Acad Polon Sci Sér Sci Tech, 1974, 22: 205
    [6] Nowacki W. Dynamical problem of thermodiffusion in solids Ⅲ. Bull Acad Polon Sci Sér Sci Tech, 1974, 22: 257
    [7] Jiang R Q. Transient Impact Effects in Heat Conduction, Mass Diffusion, and Momentum Transfer. Beijing: Science Press, 1997

    姜任秋. 热传导、质扩散与动量传递中的瞬态冲击效应. 北京: 科学出版社, 1997
    [8] Sherief H H, Hamza F A, Saleh H A. The theory of generalized thermoelastic diffusion. Int J Eng Sci, 2004, 42: 591 doi: 10.1016/j.ijengsci.2003.05.001
    [9] Zhang L, Zhang X M, Chu Z X, et al. Effect of heat wave at the initial stage in spark plasma sintering. SpringerPlus, 2016, 5: 838 doi: 10.1186/s40064-016-2344-9
    [10] Olevsky E A, Froyen L. Impact of thermal diffusion on densification during SPS. J Am Ceram Soc, 2009, 92(Suppl 1): S122 http://www.ingentaconnect.com/content/bsc/jace/2009/00000092/a00101s1/art00021
    [11] Huai X L, Jiang R Q, Liu D Y, et al. Experimental and theoretical investigation on the non-fick effects during the rapid transit mass diffusion. J Eng Thermophys, 2000, 21(5): 595 doi: 10.3321/j.issn:0253-231X.2000.05.019

    淮秀兰, 姜任秋, 刘登瀛, 等. 快速瞬态传质过程中非费克效应的实验与理论研究. 工程热物理学报, 2000, 21(5): 595 doi: 10.3321/j.issn:0253-231X.2000.05.019
    [12] Zhang L, Zhang X M, Zheng A J, et al. Influence of thermal diffusion flux on driving force in the initial stage of pulse electric current sintering. Powder Metall Technol, 2017, 35(2): 98 doi: 10.3969/j.issn.1001-3784.2017.02.004

    张龙, 张晓敏, 郑安节, 等. 热扩散对脉冲电流烧结初期驱动力的影响. 粉末冶金技术, 2017, 35(2): 98 doi: 10.3969/j.issn.1001-3784.2017.02.004
    [13] Wang C, Cheng L F, Zhao Z. FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation. Comput Mater Sci, 2010, 49: 351 doi: 10.1016/j.commatsci.2010.05.021
    [14] Kumar R, Ahuja S, Garg S K. Numerical analysis of the propagation characteristics of Stoneley waves at an interface between microstretch thermoelastic diffusion solid half spaces. Lat Am J Solids Struct, 2014, 11(13): 2408 doi: 10.1590/S1679-78252014001300005
    [15] Zhao S X, Song X Y, Wei C B, et al. Spark plasma sintering WC–Co mixed powders of various grain size matching. Mater Sci Eng Powder Metall, 2010, 15(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201001009.htm

    赵世贤, 宋晓艳, 魏崇斌, 等. 放电等离子烧结不同粒径匹配的WC–Co混合粉末. 粉末冶金材料科学与工程, 2010, 15(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201001009.htm
  • 加载中
图(5)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  109
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-12
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回