FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究

王晓峰 杨杰 邹金文 范贤强 郭志鹏

王晓峰, 杨杰, 邹金文, 范贤强, 郭志鹏. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究[J]. 粉末冶金技术, 2019, 37(4): 264-272. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005
引用本文: 王晓峰, 杨杰, 邹金文, 范贤强, 郭志鹏. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究[J]. 粉末冶金技术, 2019, 37(4): 264-272. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005
WANG Xiao-feng, YANG Jie, ZOU Jin-wen, FAN Xian-qiang, GUO Zhi-peng. Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology[J]. Powder Metallurgy Technology, 2019, 37(4): 264-272. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005
Citation: WANG Xiao-feng, YANG Jie, ZOU Jin-wen, FAN Xian-qiang, GUO Zhi-peng. Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology[J]. Powder Metallurgy Technology, 2019, 37(4): 264-272. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005

FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005
详细信息
    通讯作者:

    王晓峰, E-mail: wangxiaofeng_0404@163.com

  • 中图分类号: TF124.3

Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology

More Information
  • 摘要: 利用计算机断层扫描技术(computed tomography,CT)研究了FGH96镍基粉末高温合金内部Al2O3、SiO2及莫来石三种氧化物夹杂对不同工艺(热等静压工艺、热等静压+热挤压+等温锻造工艺及热等静压+等温锻造工艺)的敏感程度。结果表明:热等静压+等温锻造工艺能显著减小Al2O3夹杂物的尺寸和其在合金中的含量,采用热等静压+热挤压+等温锻造工艺最能有效减少SiO2夹杂物在合金中的含量,而莫来石夹杂对热等静压+热挤压+等温锻造工艺和热等静压+等温锻造工艺均较为敏感,且两种工艺对莫来石夹杂的作用效果类似。夹杂物在实际盘件中呈油饼状,极大地恶化了合金低周疲劳性能,且夹杂物越接近试样表面,试样的低周疲劳性能恶化越显著。热等静压+等温锻造工艺对减小三种夹杂的尺寸均有良好效果,这为人们选取合适工艺消除合金中氧化物夹杂提供了重要参考。
  • 图  1  氧化物夹杂的显微形貌及能谱分析:(a)Al2O3夹杂物形貌;(b)SiO2夹杂物形貌;(c)Al2O3+SiO2混合夹杂物形貌;(d)Al2O3夹杂物能谱; (e)SiO2夹杂物能谱; (f)Al2O3+SiO2混合夹杂物能谱

    Figure  1.  Scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) of oxide inclusions: (a) SEM of Al2O3; (b) SEM of SiO2; (c) SEM of Al2O3+SiO2; (d) EDS of Al2O3; (e) EDS of SiO2; (f) EDS of Al2O3+SiO2

    图  2  热等静压态样品内Al2O3夹杂的CT扫描结果

    Figure  2.  CT characterization of Al2O3 inclusions in the as-HIPed samples

    图  3  热等静压态样品内部夹杂物显微形貌及粒径分布:(a)Al2O3夹杂物形貌;(b)SiO2夹杂物形貌;(c)Al2O3+SiO2混合夹杂物形貌;(d)Al2O3夹杂物形貌放大图;(e)SiO2夹杂物形貌放大图;(f)Al2O3+SiO2混合夹杂物放大图;(g)Al2O3夹杂物晶粒尺寸分布;(h)SiO2夹杂物晶粒尺寸分布;(i)Al2O3+SiO2混合夹杂物晶粒尺寸分布

    Figure  3.  Scanning electron microscopy (SEM) and particle size distribution (PSD) of oxide inclusions in the as-HIPed samples: (a) SEM of Al2O3; (b) SEM of SiO2; (c) SEM of Al2O3+SiO2; (d) magnification SEM of Al2O3; (e) magnification SEM of SiO2; (f) magnification SEM of Al2O3+SiO2; (g) PSD of Al2O3; (h) PSD of SiO2; (i) PSD of Al2O3+SiO2

    图  4  不同成形工艺下样品内部Al2O3夹杂物显微形貌及粒径分布:(a)HIP夹杂物形貌;(b)HEX夹杂物形貌;(c)HIF夹杂物形貌;(d)HIP夹杂物形貌放大图;(e)HEX夹杂物形貌放大图;(f)HIF混合夹杂物放大图;(g)HIP夹杂物晶粒尺寸分布;(h)HEX夹杂物晶粒尺寸分布;(i)HIF混合夹杂物晶粒尺寸分布

    Figure  4.  Scanning electron microscopy (SEM) and particle size distribution (PSD) of Al2O3 inclusions in different process conditions: (a) SEM of as-HIPed samples; (b) SEM of as-HEXed samples; (c) SEM of as-HIFed samples; (d) magnification SEM of as-HIPed samples; (e) magnification SEM of as-HEXed samples; (f) magnification SEM of as-HIFed samples; (g) PSD of as-HIPed samples; (h) PSD of as-HEXed samples; (i) PSD of as-HIFed samples

    图  5  不同成形工艺下样品内部SiO2夹杂物显微形貌及粒径分布:(a)HIP夹杂物形貌;(b)HEX夹杂物形貌;(c)HIF夹杂物形貌;(d)HIP夹杂物形貌放大图;(e)HEX夹杂物形貌放大图;(f)HIF混合夹杂物放大图;(g)HIP夹杂物晶粒尺寸分布;(h)HEX夹杂物晶粒尺寸分布;(i)HIF混合夹杂物晶粒尺寸分布

    Figure  5.  Scanning electron microscopy (SEM) and particle size distribution (PSD) of SiO2 inclusions in different process conditions: (a) SEM of as-HIPed samples; (b) SEM of as-HEXed samples; (c) SEM of as-HIFed samples; (d) magnification SEM of as-HIPed samples; (e) magnification SEM of as-HEXed samples; (f) magnification SEM of as-HIFed samples; (g) PSD of as-HIPed samples; (h) PSD of as-HEXed samples; (i) PSD of as-HIFed samples

    图  6  不同成形工艺下样品内部莫来石夹杂物显微形貌及粒径分布:(a)HIP夹杂物形貌;(b)HEX夹杂物形貌;(c)HIF夹杂物形貌;(d)HIP夹杂物形貌放大图;(e)HEX夹杂物形貌放大图;(f)HIF混合夹杂物放大图;(g)HIP夹杂物晶粒尺寸分布;(h)HEX夹杂物晶粒尺寸分布;(i)HIF混合夹杂物晶粒尺寸分布

    Figure  6.  Scanning electron microscopy (SEM) and particle size distribution (PSD) of mullite inclusions in different process conditions: (a) SEM of as-HIPed samples; (b) SEM of as-HEXed samples; (c) SEM of as-HIFed samples; (d) magnification SEM of as-HIPed samples; (e) magnification SEM of as-HEXed samples; (f) magnification SEM of as-HIFed samples; (g) PSD of as-HIPed samples; (h) PSD of as-HEXed samples; (i) PSD of as-HIFed samples

    图  7  实际盘件中夹杂物宏观形貌:(a)径向;(b)轴向

    Figure  7.  Macro morphology of inclusions existed in the real disk: (a) radial direction; (b) axial direction

    图  8  超塑性变形盘件中夹杂物形貌的二维切片数据(a)和三维重构结果(b)

    Figure  8.  2D slicing data (a) and 3D reconstruction (b) of inclusion morphology existed in the superplastic deformed disk

    表  1  FGH96镍基粉末高温合金化学成分

    Table  1.   Chemical composition of nickel-based powder metallurgy superalloy FGH96

    C Cr Co Mo W Al Ti Nb B Zr Ni
    0.02~0.05 15.5~16.5 12.5~13.5 3.8~4.2 3.8~4.2 2.0~2.4 3.5~3.9 0.6~1.0 0.006~0.015 0.025~0.050 余量
    下载: 导出CSV

    表  2  夹杂物位置对试样低周疲劳性能的影响

    Table  2.   Effect of inclusion location on the low cycle fatigue properties of the specimen

    试样编号 夹杂位置 循环周次
    1 试样中心 52179
    2 约1/2半径处 44121
    3 试样边缘 4550
    不含夹杂 60000(未断)
    下载: 导出CSV
  • [1] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006
    [2] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [3] Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011

    王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011
    [4] Zhou L, Wang Y, Zou J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96. Powder Metall Technol, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008

    周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响. 粉末冶金技术, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008
    [5] Zou J W, Wang W X. Characteristic and quality control of inclusions in P/M superalloy. Powder Metall Technol, 2001, 19(1): 7 doi: 10.3321/j.issn:1001-3784.2001.01.002

    邹金文, 汪武祥. 粉末高温合金中夹杂物特性及其质量控制. 粉末冶金技术, 2001, 19(1): 7 doi: 10.3321/j.issn:1001-3784.2001.01.002
    [6] Xie X S, Zhang L N, Zhang M C, et al. Micro-mechanical behavior study of non-metallic inclusions in nickel-base P/M superalloy. Acta Metall Sin, 2002, 38(6): 635 doi: 10.3321/j.issn:0412-1961.2002.06.016

    谢锡善, 张丽娜, 张麦仓, 等. 镍基粉末高温合金中夹杂物的微观力学行为研究. 金属学报, 2002, 38(6): 635 doi: 10.3321/j.issn:0412-1961.2002.06.016
    [7] Huron E S, Roth P G. The influence of inclusions on low cycle fatigue life in a P/M nickel-base disk superalloy // The Minerals, Metals and Materials Society. Warrendale, 1996: 359
    [8] Guo W M, Wu J T, Feng D. Research on the inclusions in Ni-base superalloy FGH95 powder. Powder Metall Technol, 2001, 19(1): 3 doi: 10.3321/j.issn:1001-3784.2001.01.001

    国为民, 吴剑涛, 冯涤. 镍基高温合金粉末中夹杂的研究. 粉末冶金技术, 2001, 19(1): 3 doi: 10.3321/j.issn:1001-3784.2001.01.001
    [9] Zhou X M, Wang W X, Yang H T, et al. Character of artificial non-metallic inclusions in HIPed FGH96 alloy. J Aeronaut Mater, 2005, 25(4): 1 doi: 10.3969/j.issn.1005-5053.2005.04.001

    周晓明, 汪武祥, 杨洪涛, 等. HIP态FGH96合金中人工加入非金属夹杂物的特征. 航空材料学报, 2005, 25(4): 1 doi: 10.3969/j.issn.1005-5053.2005.04.001
    [10] Zhou X M, Wang D L, Wang Y, et al. Deformation behavior of non-metallic inclusions in nickel-base P/M superalloy. Fail Anal Prev, 2008, 3(3): 23 doi: 10.3969/j.issn.1673-6214.2008.03.005

    周晓明, 汪殿龙, 汪煜, 等. 非金属夹杂物在镍基粉末高温合金中的变形行为. 失效分析与预防, 2008, 3(3): 23 doi: 10.3969/j.issn.1673-6214.2008.03.005
    [11] Zeng Y P, Zhang M C, Dong J X, et al. Study on crack initiation and propagation induced by inclusion in nickel-base P/M superalloy. J Mater Eng, 2005(3): 10 doi: 10.3969/j.issn.1001-4381.2005.03.003

    曾燕屏, 张麦仓, 董建新, 等. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究. 材料工程, 2005(3): 10 doi: 10.3969/j.issn.1001-4381.2005.03.003
    [12] Zeng Y P, Dong J X, Zhang M C, et al. Behavior of inclusions in nickel-base P/M superalloy under tensile load. J Univ Sci Technol Beijing, 2005, 27(2): 202 doi: 10.3321/j.issn:1001-053X.2005.02.017

    曾燕屏, 董建新, 张麦仓, 等. 拉伸载荷下镍基粉末高温合金中夹杂物行为. 北京科技大学学报, 2005, 27(2): 202 doi: 10.3321/j.issn:1001-053X.2005.02.017
    [13] Xu J, Xu Y M, Liu X L, et al. Inclusion effect on crack initiation of powder metallurgy superalloy. J Northwestern Polytech Univ, 2017, 35(Suppl): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD2017S1019.htm

    许捷, 徐元铭, 刘新灵, 等. 夹杂物对粉末高温合金材料裂纹萌生的影响. 西北工业大学学报, 2017, 35(增刊): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD2017S1019.htm
    [14] Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96. Int J Fatigue, 2019, 118: 23
    [15] Naragani D, Sangid M D, Shade P A, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy. Acta Mater, 2017, 137: 71 doi: 10.1016/j.actamat.2017.07.027
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  82
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回