表面镀钨金刚石/铜复合材料的有限元模拟

梁远龙 姜国圣

梁远龙, 姜国圣. 表面镀钨金刚石/铜复合材料的有限元模拟[J]. 粉末冶金技术, 2019, 37(4): 283-287. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
引用本文: 梁远龙, 姜国圣. 表面镀钨金刚石/铜复合材料的有限元模拟[J]. 粉末冶金技术, 2019, 37(4): 283-287. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
Citation: LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.008

表面镀钨金刚石/铜复合材料的有限元模拟

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
详细信息
    通讯作者:

    姜国圣, E-mail: nmrdc@mail.csu.edu.cn

  • 中图分类号: TB333

Finite element simulation of tungsten-coated diamond/copper composites

More Information
  • 摘要: 利用有限元分析软件ANSYS,对表面镀钨金刚石/铜复合材料进行了数值模拟,研究了金刚石体积分数、金刚石粒径及镀层厚度对表面镀钨金刚石/铜复合材料导热系数和热膨胀系数的影响。结果表明:随着金刚石体积分数的增加、金刚石粒径的增大、镀层厚度的减小,复合材料的导热系数呈现出增加的趋势,与文献数据的变化趋势相符,热膨胀系数受金刚石体积分数影响最大,金刚石粒径选在150~200 μm较为合适。
  • 图  1  有限元模拟中金刚石三维立体模型示意图

    Figure  1.  Schematic diagram of 3D diamond model in finite element simulation

    图  2  有限元模拟中镀钨金刚石/铜三维立体模型示意图

    Figure  2.  Schematic diagram of 3D tungsten-coated diamond/ copper model in finite element simulation

    图  3  金刚石体积分数与复合材料导热系数和热膨胀系数的关系

    Figure  3.  Relationship between the diamond volume fraction, thermal conductivity, and thermal expansion coefficient of the composites

    图  4  金刚石粒径与复合材料导热系数和热膨胀系数关系

    Figure  4.  Relationship between the diamond diameter, thermal conductivity, and thermal expansion coefficient of the composites

    图  5  镀层厚度与复合材料导热系数和热膨胀系数的关系

    Figure  5.  Relationship between the tungsten coating thickness, thermal conductivity, and thermal expansion coefficient of the composites

    表  1  有限元模拟使用到的物理参数

    Table  1.   Parameters used in finite element simulation

    材料种类 导热系数/ [W·(m·K)-1] 热膨胀系数/ (×10-6·K-1) 弹性模量/ GPa 泊松比
    金刚石 1500[17] 1.20 1200 0.07
    WC 80[18] 3.84[19] 600 0.20
    Cu 400[16] 17.60 120 0.33
    下载: 导出CSV
  • [1] Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng, 2012, 48(15): 72 http://www.sciencedirect.com/science/article/pii/S1359431112003717
    [2] Hanada K, Matsuzaki K, Sano T. Thermal properties of diamond particle-dispersed Cu composites. J Mater Process Technol, 2004, 153-154(22): 514 http://www.sciencedirect.com/science/article/pii/S0924013604004686
    [3] Zhang C, Wang R C, Peng C Q, et al. Effects of tungsten coating layer on thermal conductivity of diamond-copper composites. Rare Met Mater Eng, 2016, 45(10): 2692

    张纯, 王日初, 彭超群, 等. 表面镀钨层对金刚石/铜复合材料导热系数的影响. 稀有金属材料与工程, 2016, 45(10): 2692
    [4] Zain-ul-abdein M, Raza K, Khalid F A, et al. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites. Mater Des, 2015, 86: 248 doi: 10.1016/j.matdes.2015.07.059
    [5] Ma S D, Zhao N Q, Shi C S, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci, 2017, 402: 372 doi: 10.1016/j.apsusc.2017.01.078
    [6] Tang M Q, Huang M, Luo X Y. Research of diamond titanium coating. Powder Metall Ind, 2006, 16(2): 15 doi: 10.3969/j.issn.1006-6543.2006.02.004

    唐明强, 黄漫, 罗锡裕. 金刚石镀钛层的研究. 粉末冶金工业, 2006, 16(2): 15 doi: 10.3969/j.issn.1006-6543.2006.02.004
    [7] Ma H B, Bai H, Xue C, et al. Research on preparation and properties of boron-coated diamond‒metal matrix composite. Cemented Carbide, 2017, 34(5): 314 https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201705004.htm

    马洪兵, 白华, 薛晨, 等. 镀硼金刚石‒金属基复合材料的制备及其性能研究. 硬质合金, 2017, 34(5): 314 https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201705004.htm
    [8] Ren X T, Dong Y H, Zhang R Q, et al. Effect of salt bath plating temperature on microstructure and properties of diamond-Cr/Cu composites. Trans Mater Heat Treat, 2017, 38(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201701001.htm

    任学堂, 董应虎, 张瑞卿, 等. 盐浴镀覆温度对diamond-Cr/Cu复合材料组织性能的影响. 材料热处理学报, 2017, 38(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201701001.htm
    [9] Chu K, Jia C C, Guo H, et al. On the thermal conductivity of Cu–Zr/diamond composites. Mater Des, 2013, 45(45): 36 http://www.sciencedirect.com/science/article/pii/S0261306912006292
    [10] Bai G Z, Li N, Wang X T, et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. J Alloys Compd, 2018, 735: 1648 doi: 10.1016/j.jallcom.2017.11.273
    [11] Yoshida K, Morigami H. Thermal properties of diamond/copper composite material. Microelectron Reliab, 2004, 44(2): 303 doi: 10.1016/S0026-2714(03)00215-4
    [12] Hong Q N, Reng S B, Cheng Z B, et al. Effects of Co on properties of diamond/Cu composites by infiltration. Powder Metall Technol, 2015, 33(1): 49 http://pmt.ustb.edu.cn/article/id/fmyjjs201501010

    洪庆楠, 任淑彬, 陈志宝, 等. Co对熔渗法制备金刚石/Cu复合材料性能的影响. 粉末冶金技术, 2015, 33(1): 49 http://pmt.ustb.edu.cn/article/id/fmyjjs201501010
    [13] Zhang C, Cai Z Y, Tang Y G, et al. Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification. Diamond Relat Mater, 2018, 86: 98 doi: 10.1016/j.diamond.2018.04.020
    [14] Zhang Y J. Simulation Research on Thermal Conductivity of Diamond/Cu Composites for Electronic Packaging [Dissertation]. Nanchang: Nanchang Hangkong University, 2017

    张永杰. 电子封装用金刚石/铜复合材料导热性能的数值模拟研究[学位论文]. 南昌: 南昌航空大学, 2017
    [15] Flaque J, Rios A, Martin-Meizoso A, et al. Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci, 2007, 41(2): 156 doi: 10.1016/j.commatsci.2007.03.016
    [16] Rape A, Gott K, Kulkarni A, et al. Simulation of matrix conductivity in copper–diamond composites sintered by field assisted sintering technology. Comput Mater Sci, 2015, 110: 29 doi: 10.1016/j.commatsci.2015.07.030
    [17] Yang W L, Peng K, Zhou L P, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface. Comput Mater Sci, 2014, 83: 375 doi: 10.1016/j.commatsci.2013.11.059
    [18] Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci, 2010, 46(5): 1424
    [19] Ma C A. Preparation, Characterization and Electrochemial Properties of Catalytic of High Activity Tungsthn Carbide [Dissertation]. Shanghai: Shanghai University, 2005

    马淳安. 高活性碳化钨催化材料的制备、表征及电化学性能研究[学位论文]. 上海: 上海大学, 2005
    [20] Wang L H, Li J W, Che Z F, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J Alloys Compd, 2018, 749: 1098 doi: 10.1016/j.jallcom.2018.03.241
    [21] Huang X, Xu Y J, Yi X, et al. Effect of particle size, grade and coating thickness of diamond coated with chromium film on thermal properties of diamond/Cu composite. Powder Metall Ind, 2018, 28(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201803017.htm

    黄霞, 徐燕军, 尹翔, 等. 镀铬金刚石粒度、品级和膜厚对金刚石/铜复合材料热物性能的影响. 粉末冶金工业, 2018, 28(3): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201803017.htm
    [22] Zhang C, Wang R C, Cai Z Y, et al. Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. J Mater Sci Mater Electron, 2015, 26(1): 185 doi: 10.1007/s10854-014-2381-5
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  114
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回