粉末净成形压制工艺优化及三维复杂零件结构设计的数值模拟

申小平 黄永强

申小平, 黄永强. 粉末净成形压制工艺优化及三维复杂零件结构设计的数值模拟[J]. 粉末冶金技术, 2019, 37(4): 298-305. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
引用本文: 申小平, 黄永强. 粉末净成形压制工艺优化及三维复杂零件结构设计的数值模拟[J]. 粉末冶金技术, 2019, 37(4): 298-305. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
Citation: SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.010

粉末净成形压制工艺优化及三维复杂零件结构设计的数值模拟

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
详细信息
    通讯作者:

    申小平, E-mail: xpshen171@163.com

  • 中图分类号: TG38

Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation

More Information
  • 摘要: 基于粉末连续体,运用MSC.Marc有限元软件对粉末净成形压制工艺进行优化,并对减重齿轮的结构设计进行数值模拟。通过与实验数据对比分析,验证了材料模型及仿真模拟的可靠性,在此基础上利用有限元软件研究分析压制方式、压制速度、摩擦系数、压制温度、保压时间等五组因素对压坯密度分布的影响。结果表明,压制方式是最显著的影响因子,采用双向压制、温压成形、低压制速度、小摩擦系数及保压方式的组合压制工艺能有效地改善粉体的密度分布。利用有限元软件对减重齿轮的结构进行优化设计,研究圆环高径比与压坯相对密度的关系,并确定减重孔最佳尺寸。结果表明,采用强制摩擦压制方式代替浮动压制方式,可有效改善孔洞薄壁处密度。此外,结合Workbench有限元软件对减重齿轮进行结构力学模拟仿真,分析薄壁处的受力情况,以满足对齿轮强度的要求。
  • 图  1  弹性模量与相对密度关系(a)、泊松比与相对密度关系(b)及流动应力‒应变曲线(c)

    Figure  1.  Relationship between the relative density and elasticity modulus (a), relationship between the relative density and Poisson's ratio (b), and the flow stress‒strain curve (c)

    图  2  有限元数值模拟模型示意图

    Figure  2.  Schematic diagram of finite element simulation model

    图  3  相对密度随压坯轴向位移变化

    Figure  3.  Relationship between the relative density and axial displacement of compaction

    图  4  不同工艺下压坯等效应力(σeq)分布状况:(a)优化工艺;(b)基准工艺

    Figure  4.  Distribution of equivalent stress (σeq) in different process: (a) optimization simulation; (b) standard simulation

    图  5  优化工艺与基准工艺下相对密度与压坯轴向位移的关系

    Figure  5.  Relationship between the relative density and axial displacement of compaction in optimization simulation and standard simulation

    图  6  不同尺寸孔洞1/6直齿轮相对密度分布:(a)2 mm;(b)3 mm;(c)4 mm;(d)5 mm

    Figure  6.  Relative density distributions of 1/6 gears in different hole sizes: (a) 2 mm; (b) 3 mm; (c) 4 mm; (d) 5 mm

    图  7  不同侧压系数下相对密度与压坯轴向位移的关系

    Figure  7.  Relationship between the relative density and axial displacement of compaction at different K values

    图  8  侧压系数(K)和相对密度波动系数(Y)的线性关系

    Figure  8.  Linear relationship of K and Y

    图  9  强制摩擦压制(a)与浮动压制(b)模型对比

    Figure  9.  Compaction model of suppressed friction compaction (a) and floating compaction (b)

    图  10  不同压制方式下压坯相对密度(ρ)分布状况:(a)强制摩擦压制;(b)浮动压制

    Figure  10.  Distribution of relative density (ρ) in different compaction styles: (a) suppressed friction compaction; (b) floating compaction

    图  11  强制摩擦压制与浮动压制下相对密度与压坯轴向位移的关系

    Figure  11.  Relationship of the relative density and axial displacement in suppressed friction compaction and floating compaction

    图  12  不同尺寸孔洞的齿轮转动过程中等效应力分布:(a)3 mm;(b)5 mm

    Figure  12.  Equivalent stress distribution during gear transmission process in different hole sizes: (a) 3 mm; (b) 5 mm

    表  1  相对密度实验值与模拟值

    Table  1.   Relative density in simulation and experiment

    数值 位置1 位置2 位置3 位置4 位置5
    模拟值 0.8074 0.7862 0.7712 0.7862 0.8074
    实验值 0.8168 0.7899 0.7551 0.7763 0.8136
    误差/% 1.15 0.47 2.13 1.28 0.76
    下载: 导出CSV

    表  2  正交试验设计与结果

    Table  2.   Design and results of orthogonal experiments

    模型编号 压制方式 温度/℃ 速度/(mm·s-1) 摩擦系数 保压时间/s 标准差,Y
    1 单向压制 20 9.8 0.1 0 4.55×10-3
    2 单向压制 20 9.8 0.2 1 8.93×10-3
    3 单向压制 120 4.9 0.1 1 2.58×10-3
    4 单向压制 120 4.9 0.2 0 5.29×10-3
    5 双向压制 20 4.9 0.1 1 2.15×10-3
    6 双向压制 20 4.9 0.2 0 3.88×10-3
    7 双向压制 120 9.8 0.1 0 1.03×10-3
    8 双向压制 120 9.8 0.2 1 2.02×10-3
    标准差平均值,Y1 5.34×10-3 4.88×10-3 3.48×10-3 2.58×10-3 3.92×10-3
    标准差平均值,Y2 2.22×10-3 2.73×10-3 4.13×10-3 5.03×10-3 3.69×10-3
    标准差相对差值 3.12×10-3 2.15×10-3 6.5×10-4 2.45×10-3 2.3×10-4
    下载: 导出CSV
  • [1] Wallner S, Hatzenbichler T, Buchmayr B. Implementation of yield functions in the FEM software DEFORM 3DTM to simulate the densification of PM materials. BHM Berg-Huttenmann Monatsh, 2008, 153(11): 435
    [2] Cante J C, Riera M D, Oliver J, et al. Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granular Matter, 2011, 13(1): 79
    [3] Zhou Z Y, Li Y Y. Mechanical Modeling and Computer Simulation of Metal Powder Forming. Guangzhou: South China University of Technology Press, 2011

    周照耀, 李元元. 金属粉末成形力学建模与计算机模拟. 广州: 华南理工大学出版社, 2011
    [4] Andersson D C, Lindskog P, Staf H, et al. A numerical study of material parameter sensitivity in the production of hard metal components using powder compaction. J Mater Eng Perform, 2014, 23(6): 2199 doi: 10.1007/s11665-014-0989-5
    [5] Bai C Y, He Y J, Xiang T T, et al. P/M forming technique for fuel control sleeve of diesel engine. Powder Metall Technol, 2015, 33(5): 365 doi: 10.3969/j.issn.1001-3784.2015.05.010

    白才艳, 何育嘉, 项涛涛, 等. 柴油机油量控制套筒粉末冶金成形技术的研究. 粉末冶金技术, 2015, 33(5): 365 doi: 10.3969/j.issn.1001-3784.2015.05.010
    [6] Wikman B, Bergman G, Oldenburg M, et al. Estimation of constitutive parameters for powder pressing by inverse modelling. Struct Multi Optim, 2006, 31(5): 400
    [7] Zhou Z P, Shen X P. Powder Metallurgy Machinery Parts and Practical Technology. Beijing: Chemical Industry Press, 2005

    周作平, 申小平. 粉末冶金机械零件使用技术. 北京: 化学工业出版社, 2005
    [8] Huang Y Q, Shen X P, Pan S Y, et al. Numerical simulation of powder hot forging cam. Powder Metall Ind, 2016, 26(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602016.htm

    黄永强, 申小平, 潘诗琰, 等. 粉末热锻凸轮的数值模拟. 粉末冶金工业, 2016, 26(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602016.htm
    [9] Jung J M, Yoo J H, Jeong H J, et al. Three-dimensional characterization of SiC particle-reinforced Al composites using serial sectioning tomography and thermo-mechanical finite element simulation. Metall Mater Trans A, 2014, 45(12): 5679
    [10] Gao J Z. Plastic Forming Process and Die Design. Beijing: China Machine Press, 2001

    高锦张. 塑性成形工艺与模具设计. 北京: 机械工业出版社, 2001
    [11] Ludwig R, Apelian D, Leuenberger G. An NDE methodology to predict density in green-state powder metallurgy compacts. J Nondestr Eval, 2005, 24(3): 109
    [12] Shen X P, Huang Y Q, Xu X D. Optimization design of the mould for oil-quantity-controlling sleeve of diesel engine. Mater Sci Eng Powder Metall, 2016, 21(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201604016.htm

    申小平, 黄永强, 徐旭东. 柴油机油量控制套筒的模具优化设计. 粉末冶金材料科学与工程, 2016, 21(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201604016.htm
    [13] Shofman L A. Dependence of the density of metal-powder compacts on compaction pressure. Sov Powder Metall Met Ceram, 1968, 7(8): 596
    [14] Wang D G, Wu Y C, Jiao M H, et al. Finite element simulation of influence of different compacting processes on powder metallurgic products properties. Chin J Mech Eng, 2008, 44(1): 205 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801037.htm

    王德广, 吴玉程, 焦明华, 等. 不同压制工艺对粉末冶金制品性能影响的有限元模拟. 机械工程学报, 2008, 44(1): 205 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801037.htm
    [15] Sun L, Zhou C F, Wang H Y, et al. Microstructure and mechanical properties of powder metallurgy forging bilayer cam. Powder Metall Technol, 2017, 35(6): 403 doi: 10.19591/j.cnki.cn11-1974/tf.2017.06.001

    孙露, 周春芳, 王惠亚, 等. 粉末热锻双层材料凸轮的显微组织与力学性能研究. 粉末冶金技术, 2017, 35(6): 403 doi: 10.19591/j.cnki.cn11-1974/tf.2017.06.001
    [16] Fang W, He X B, Zhang R J, et al. Numerical simulation of powder volume fraction variation during powder injection molding filling flow process. Mater Sci Eng Powder Metall, 2013, 18(2): 149 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201302002.htm

    方伟, 何新波, 张瑞杰, 等. 粉末注射成形充模过程中粉体分布的数值模拟. 粉末冶金材料科学与工程, 2013, 18(2): 149 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201302002.htm
    [17] Zadeh H K, Jeswiet J, Kim I Y. Improvement in robustness and computational efficiency of material models for finite element analysis of metal powder compaction and experiment validation. Int J Adv Manuf Technol, 2013, 68(5-8): 1785
    [18] You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704015.htm

    尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704015.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  68
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回