增材制造技术制备生物植入材料的研究进展

张光曦 刘世锋 杨鑫 时明军 任垚嘉

张光曦, 刘世锋, 杨鑫, 时明军, 任垚嘉. 增材制造技术制备生物植入材料的研究进展[J]. 粉末冶金技术, 2019, 37(4): 312-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
引用本文: 张光曦, 刘世锋, 杨鑫, 时明军, 任垚嘉. 增材制造技术制备生物植入材料的研究进展[J]. 粉末冶金技术, 2019, 37(4): 312-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
ZHANG Guang-xi, LIU Shi-feng, YANG Xin, SHI Ming-jun, REN Yao-jia. Research progress on preparation of biological implant materials by additive manufacturing[J]. Powder Metallurgy Technology, 2019, 37(4): 312-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
Citation: ZHANG Guang-xi, LIU Shi-feng, YANG Xin, SHI Ming-jun, REN Yao-jia. Research progress on preparation of biological implant materials by additive manufacturing[J]. Powder Metallurgy Technology, 2019, 37(4): 312-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012

增材制造技术制备生物植入材料的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
基金项目: 

国家自然科学基金资助项目 51671152

国家自然科学基金资助项目 51874225

详细信息
    通讯作者:

    刘世锋, E-mail: Liushifeng66@126.com

  • 中图分类号: TP391.73;R318.08

Research progress on preparation of biological implant materials by additive manufacturing

More Information
  • 摘要: 增材制造技术突破了传统模具加工工艺的限制,可用于高效个性化定制生物医用材料。近年来,医学上对骨骼修复和移植的个性化需求显著增加,增材制造可满足该定制化的需求,促使增材制造技术在生物医用材料领域占据重要地位。随着材料科学技术和计算机辅助技术(CAD/CAM)的发展,可用于增材制造的生物植入材料不再局限于钛系、钽系、钴铬钼等合金,聚醚醚酮、磷酸钙盐等非金属类材料因良好的生物相容性也得到了广泛应用,增材制造技术制备仿生人造骨植入体成为新的研究热点。本文介绍了增材制造技术的原理,对激光、电子束、光固化等增材制造技术进行了比较,并阐述了增材制造在生物植入体和医疗器械方面的应用现状,对增材制造技术在医疗领域的应用及发展做了展望。
  • 图  1  选择性激光熔融成形原理示意图[4]

    Figure  1.  Schematic of the selective laser melting process[4]

    图  2  增材制造植入体应用部位[3]

    Figure  2.  Application of implants by additive manufacturing[3]

    表  1  增材制造技术工艺特点

    Table  1.   Characteristics of additive manufacturing technology

    增材制造技术 优点 缺点
    光固化成型 成型尺寸精度高,表面光滑,原料利用率高 高成本,力学强度低[4-5]
    熔融沉积成型 力学性能好,表面光滑 高温成型,材料受限,精度差[2]
    选择性激光烧结 成型速度快,可用材料广泛 高温成型,表面粗糙,精度差[4]
    选择性激光熔融 原料节省可回收,成型尺寸精度高[6-7] 成型尺寸小,表面需再加工[2]
    电子束熔融成型 成型速度快,原料可回收 成型尺寸受粉床和真空室限制
    三维喷印 成型速度快,可以打印细胞和凝胶结构[8] 力学强度低,精度差,粉尘污染
    分层实体制造 成型速度快,可成型大尺寸零件 材料浪费,表面质量差[5]
    下载: 导出CSV

    表  2  Ti-6Mo合金与人体骨力学性能对比[25]

    Table  2.   Comparison of mechanical properties between Ti-6Mo alloy and human bone[25]

    材料 孔隙率/ % 弹性模量/ GPa 抗压强度/ MPa
    Ti-6Mo合金 58±3 2.07±0.19 135.30±2.82
    24±2 11.90±1.13 575.6±17.7
    松质骨 0.01~3.00 0.2~80.0
    皮质骨 4.4~28.8 96~200
    下载: 导出CSV

    表  3  PEEK材料不同结晶度的力学性能[42]

    Table  3.   Mechanical properties of PEEK with different crystallinity[42]

    结晶度/ % 抗拉强度/ MPa 弹性模量/ GPa 断裂伸长率/
    %
    20 58 2.65 140
    35 90 4 15
    20~35 按需调控
    下载: 导出CSV
  • [1] Malik H H, Darwood A R, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res, 2015, 199(2): 512 doi: 10.1016/j.jss.2015.06.051
    [2] Wang L, Dai K R. Individualized treatment of orthopaedics and 3D printing technology. J Med Biomech, 2014, 29(3): 193 https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201403001.htm

    王燎, 戴尅戎. 骨科个体化治疗与3D打印技术. 医用生物力学, 2014, 29(3): 193 https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201403001.htm
    [3] Han Q Y, Li S P, Xiao X F, et al. 3D printing: The application in medicine devices. Sci Technol Rev, 2017, 35(2): 72 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201702018.htm

    韩倩宜, 李淑萍, 肖雄夫, 等. 3D打印技术在植入式医疗器械中的应用. 科技导报, 2017, 35(2): 72 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201702018.htm
    [4] Shi Y S, Yan C Z, Wei Q S, et al. Polymer based composites for selective laser sintering 3D printing technology. Sci China Inf Sci, 2015, 45(2): 204 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201502004.htm

    史玉升, 闫春泽, 魏青松, 等. 选择性激光烧结3D打印用高分子复合材料. 中国科学(信息科学), 2015, 45(2): 204 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201502004.htm
    [5] Scalera F, Corcione C E, Montagna F, et al. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram Int, 2014, 40(10): 15455 doi: 10.1016/j.ceramint.2014.06.117
    [6] Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009

    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009
    [7] Wu H, Ren J Y, Huang Q L, et al. Effect of laser parameters on microstructure, metallurgical defects and property of AlSi10Mg printed by selective laser melting. J Micromech Mol Phys, 2017, 2(4): 5 doi: 10.1142/S2424913017500175
    [8] He C L, Tang Z H, Tian H Y, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology. Acta Polym Sin, 2013(6): 722 https://www.cnki.com.cn/Article/CJFDTOTAL-GFXB201306003.htm

    贺超良, 汤朝晖, 田华雨, 等. 3D打印技术制备生物医用高分子材料的研究进展. 高分子学报, 2013(6): 722 https://www.cnki.com.cn/Article/CJFDTOTAL-GFXB201306003.htm
    [9] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
    [10] Zhou Y L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater Sci Eng A, 2005, 398(1): 28 http://www.sciencedirect.com/science/article/pii/S0921509305002133
    [11] Kopova I, Stráský J, Harcuba P, et al. Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater Sci Eng C, 2016, 60: 230 doi: 10.1016/j.msec.2015.11.043
    [12] Shi F W, Fu J, Guo Z. The application of 3D printing technique in the oncology teaching of orthopedics. Chin J Med Educ, 2015, 35(6): 916 doi: 10.3760/cma.j.issn.1673-677X.2015.06.033

    施凤伟, 付军, 郭征. 3D打印技术在骨科学肿瘤教学中的应用. 中华医学教育杂志, 2015, 35(6): 916 doi: 10.3760/cma.j.issn.1673-677X.2015.06.033
    [13] Yang J, Cai H, Lü J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine, 2014, 39(8): 486 doi: 10.1097/BRS.0000000000000211
    [14] Hu H B, Liu H Q, Wang J E, et al. Research progress of biomedical porous titanium and its alloys. Mater Rev, 2012, 26(19): 262 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S1077.htm

    胡海波, 刘会群, 王杰恩, 等. 生物医用多孔钛及钛合金的研究进展. 材料导报, 2012, 26(19): 262 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S1077.htm
    [15] Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012

    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012
    [16] Li S J, Li X K, Hou W T, et al. Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci China Mater, 2018, 61(4): 525 doi: 10.1007/s40843-017-9063-6
    [17] Palmquist A, Snis A, Emanuelsson L, et al. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl, 2013, 27(8): 1003 doi: 10.1177/0885328211431857
    [18] Shivaram A, Bose S, Bandyopadhyay A. Understanding long-term silver release from surface modified porous titanium implants. Acta Biomater, 2017, 58: 550 doi: 10.1016/j.actbio.2017.05.048
    [19] Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C, 2016, 59: 690 doi: 10.1016/j.msec.2015.10.069
    [20] Wauthle R, Ahmadi S M, Yavari S A, et al. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Mater Sci Eng C, 2015, 54: 94 doi: 10.1016/j.msec.2015.05.001
    [21] Butscher A, Bohner M, Hofmann S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater, 2011, 7(3): 907 doi: 10.1016/j.actbio.2010.09.039
    [22] Yang G Y, Tang H P, Liu N, et al. Fabrication and characterization of Ti-5Ta-30Nb-7Zr biomedical porous alloy by selective electron beam melting. Titanium Ind Prog, 2017, 34(1): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201701010.htm

    杨广宇, 汤慧萍, 刘楠, 等. Ti-5Ta-30Nb-7Zr合金医用多孔材料的电子束选区熔化成形及表征. 钛工业进展, 2017, 34(1): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201701010.htm
    [23] Wauthle R, van der Stok J, Yavari S A, et al. Additively manufactured porous tantalum implants. Acta Biomater, 2015, 14: 217 doi: 10.1016/j.actbio.2014.12.003
    [24] Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomater, 2010, 6(8): 3349 doi: 10.1016/j.actbio.2010.01.046
    [25] Jie F X, He X M, Yu J H, et al. Structural characteristics and mechanical behavior of selective laser sintered porous Ti-6Mo alloy for biomedical applications. Rare Met Mater Eng, 2016, 44(6): 1477 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201606014.htm

    颉芳霞, 何雪明, 俞经虎, 等. 生物医用多孔Ti-6Mo合金选择性激光烧结的结构特征和力学行为. 稀有金属材料与工程, 2016, 45(6): 1477 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201606014.htm
    [26] Lin H, Yang Y Q, Zhang G Q, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting. Acta Opt Sin, 2016(11): 1114003-1 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611019.htm

    林辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能. 光学学报, 2016, 36(11): 1114003-1 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611019.htm
    [27] Schwindling F S, Seubert M, Rues S, et al. Two-body wear of CoCr fabricated by selective laser melting compared with different dental alloys. Tribol Lett, 2015, 60(2): 25 doi: 10.1007/s11249-015-0601-7
    [28] Zhang G Q, Yang Y Q, Lin H, et al. Study on tribology performance of CoCrMo alloy parts manufactured by selective laser melting. Chin J Lasers, 2016, 43(8): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201608023.htm

    张国庆, 杨永强, 林辉, 等. 激光选区熔化成型CoCrMo合金摩擦学性能研究. 中国激光, 2016, 43(8): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201608023.htm
    [29] Chiba A, Kumagai K, Nomura N, et al. Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co–29Cr–6Mo alloys. Acta Mater, 2007, 55(4): 1309 doi: 10.1016/j.actamat.2006.10.005
    [30] Yu Q, Tian J. Application of three-dimensional printing technique in manufacturing scaffolds for bone tissue engineering. J Clin Rehabil Tissue Eng Res, 2015, 19(30): 4870 doi: 10.3969/j.issn.2095-4344.2015.30.022

    于强, 田京. 构建骨组织工程支架中应用的3D打印技术. 中国组织工程研究, 2015, 19(30): 4870 doi: 10.3969/j.issn.2095-4344.2015.30.022
    [31] Cao X. Research of Biomimetic Preparation and Characterization of Hydroxyap Coating on Titanium Matrix Surface[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2015

    曹鑫. 钛基羟基磷灰石涂层的仿生制备与性能研究[学位论文]. 西安: 陕西科技大学, 2015
    [32] Warnke P H, Seitz H, Warnke F, et al. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations. J Biomed Mater Res B, 2010, 93(1): 212 http://www.ncbi.nlm.nih.gov/pubmed/20091914
    [33] Zhuang J Y. Study on Preparation of TCP Scaffold via Selective Laser Sintering[Dissertation]. Changsha: Central South University, 2013

    庄静宇. 选择性激光烧结制备磷酸三钙人工骨支架的研究[学位论文]. 长沙: 中南大学, 2013
    [34] Saijo H, Igawa K, Kanno Y, et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs, 2009, 12(3): 200 doi: 10.1007/s10047-009-0462-7
    [35] Lian Q, Zhuang P, Li C H, et al. Mechanical properties of polylactic acid/β-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique. Chin J Rep Reconstr Surg, 2014, 28(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXCW201403014.htm

    连芩, 庄佩, 李常海, 等. 3D打印双管道聚乳酸/β-磷酸三钙生物陶瓷复合材料支架的力学性能研究. 中国修复重建外科杂志, 2014, 28(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXCW201403014.htm
    [36] Zou L M, Yang C, Li Y Y. Research progress on preparing Ti-based biomedical materials by powder metallurgy. Mater Rev, 2011, 25(15): 82 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201115019.htm

    邹黎明, 杨超, 李元元. 粉末冶金法制备钛基生物医学材料的研究进展. 材料导报, 2011, 25(15): 82 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201115019.htm
    [37] Li X, Feng C D, Wang L, et al. Fabrication and in vitro biocompatibility of porous Ti/chitason/hydroxyapatite composite scaffold. Chin J Orthop Trauma, 2016, 18(1): 6 doi: 10.3760/cma.j.issn.1671-7600.2016.01.002

    李祥, 冯辰栋, 王林, 等. 3D打印多孔钛/壳聚糖/羟基磷灰石复合支架的制备与体外生物相容性研究. 中华创伤骨科杂志, 2016, 18(1): 6 doi: 10.3760/cma.j.issn.1671-7600.2016.01.002
    [38] Song J, Wang S, Liao Z H, et al. The research progress offriction and wear properties of polyetheretherketone and its modified materials for artificial joints. J Funct Mater, 2014, 45(23): 23010 doi: 10.3969/j.issn.1001-9731.2014.23.002

    宋剑, 王松, 廖振华, 等. 聚醚醚酮及其改性的人工关节材料的摩擦磨损性能研究进展. 功能材料, 2014, 45(23): 23010 doi: 10.3969/j.issn.1001-9731.2014.23.002
    [39] Zhang Y. Thermodynamic Simulation and Experiment of 3D Printing of Bionic Artificial Bone with Polyetheretherketone (PEEK)[Dissertation]. Changchun: Jilin University, 2014

    张钰. 聚醚醚酮仿生人工骨3D打印热力学仿真及实验研究[学位论文]. 长春: 吉林大学, 2014
    [40] Tan L X, Liu Y X, Chen R M, et al. Multi-point flexible molding for personalized PEEK skull repair. J Xi'an Jiaotong Univ, 2016, 50(8): 130 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201608021.htm

    谭力新, 刘亚雄, 陈若梦, 等. 个性化聚醚醚酮颅骨植入物多点柔性注塑工艺. 西安交通大学学报, 2016, 50(8): 130 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201608021.htm
    [41] Yunnan Daxue Bao. The world's first 3D printed PEEK implant for the treatment of nutcracker syndrome was completed successfully by Yunnan University and Air Force Military Medical University[J/OL]. Yunnan Daxue Bao (2018-03-07)[2018-07-18]. http://ynunews.cuepa.cn/show_more.php?doc_id=2381274

    云南大学报. 云南大学联合空军军医大学成功实现世界首例3D打印PEEK植入体用于胡桃夹综合症治疗[J/OL]. 云南大学报(2018-03-07)[2018-07-18]. http://ynunews.cuepa.cn/show_more.php?doc_id=2381274
    [42] Yang C C, Tian X Y, Li D C, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol, 2017, 248: 1 doi: 10.1016/j.jmatprotec.2017.04.027
    [43] Wang J, Huang H, Wang S Y, et al. Shoulder hemiarthroplasty assisted by individualized navigation templates 3D printed. Chin J Orthop Trauma, 2017, 19(7): 596 doi: 10.3760/cma.j.issn.1671-7600.2017.07.008

    王均, 黄河, 王少云, 等. 3D打印个体化导航模板辅助半肩置换的有效性和精确性. 中华创伤骨科杂志, 2017, 19(7): 596 doi: 10.3760/cma.j.issn.1671-7600.2017.07.008
    [44] Liu F Z, Liu M X, Wang Y H, et al. Research progress on application of 3D printing technology in medical field. Mater China, 2016, 35(5): 381 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201605008.htm

    刘凤珍, 刘明信, 王运华, 等. 3D打印技术在医学领域中的应用研究进展. 中国材料进展, 2016, 35(5): 381 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201605008.htm
    [45] Tam M D, Laycock S D, Bell D, et al. 3D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep, 2012, 6(1): 31
    [46] Waran V, Narayanan V, Karuppiah R, et al. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg, 2014, 120(2): 489 doi: 10.3171/2013.11.JNS131066
    [47] Lan Q, Chen A, Zhang T, et al. Development of three-dimensional printed craniocerebral models for simulated neurosurgery. World Neurosurg, 2016, 91: 434 doi: 10.1016/j.wneu.2016.04.069
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  168
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-24
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回