原位生成六铝酸钙对刚玉质多孔材料结构和性能的影响

熊鑫 王周福 王玺堂 刘浩 马妍

熊鑫, 王周福, 王玺堂, 刘浩, 马妍. 原位生成六铝酸钙对刚玉质多孔材料结构和性能的影响[J]. 粉末冶金技术, 2019, 37(6): 410-415, 421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.002
引用本文: 熊鑫, 王周福, 王玺堂, 刘浩, 马妍. 原位生成六铝酸钙对刚玉质多孔材料结构和性能的影响[J]. 粉末冶金技术, 2019, 37(6): 410-415, 421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.002
XIONG Xin, WANG Zhou-fu, WANG Xi-tang, LIU Hao, MA Yan. Effect of in-situ synthesized calcium hexaluminate on the structure and properties of porous corundum materials[J]. Powder Metallurgy Technology, 2019, 37(6): 410-415, 421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.002
Citation: XIONG Xin, WANG Zhou-fu, WANG Xi-tang, LIU Hao, MA Yan. Effect of in-situ synthesized calcium hexaluminate on the structure and properties of porous corundum materials[J]. Powder Metallurgy Technology, 2019, 37(6): 410-415, 421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.002

原位生成六铝酸钙对刚玉质多孔材料结构和性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.002
基金项目: 

国家自然科学基金资助项目 51474166

国家自然科学基金资助项目 51672195

国家重点研发计划资助项目 2017YFB0310701

详细信息
    通讯作者:

    王周福, E-mail: whwangzf@163.com

  • 中图分类号: TQ175.7

Effect of in-situ synthesized calcium hexaluminate on the structure and properties of porous corundum materials

More Information
  • 摘要: 为解决多孔透气材料力学强度与透气性能两者之间的矛盾, 以纯铝酸钙水泥为钙源, 在刚玉质多孔材料中原位生成六铝酸钙相, 研究了六铝酸钙生成量对多孔材料显微结构、物相组成及物理性能的影响。结果表明: 在1700℃保温3 h处理后, 添加纯铝酸钙水泥的试样中均有板状片六铝酸钙生成。当纯铝酸钙水泥添加量(质量分数)不超过3%时, 六铝酸钙的原位生成不仅提高了多孔材料的常温耐压强度和高温抗折强度(1400℃保温0.5 h), 还能改善材料的透气性能; 继续增加纯铝酸钙水泥的加入量, 多孔材料的上述性能降低。当纯铝酸钙水泥添加量(质量分数)为3%时, 试样常温耐压强度为33.6 MPa, 高温抗折强度为6.2 MPa, 达西渗流系数及非达西渗流系数分别为2.54×10-10 m2和1.46×10-6 m。
  • 图  1  1700 ℃保温3 h烧成试样的X射线衍射分析

    Figure  1.  X-ray diffraction analysis of samples treated at 1700 ℃ for 3 h (C0~C7)

    图  2  烧成试样扫描电子显微形貌:(a)C0;(b)C1;(c)C3;(d)图(c)中Ca元素能谱分析;(e)C5;(f)C7

    Figure  2.  SEM morphology of the sintering specimens: (a) C0; (b) C1; (c) C3; (d) energy spectrum analysis of Ca in Fig. 2(c); (e) C5; (f) C7

    图  3  C7试样显微形貌(a)及其局部放大图(b)

    Figure  3.  SEM morphology of C7 (a) and the higher magnification micrograph (b)

    图  4  添加不同纯铝酸钙水泥试样的孔径分布:(a)气孔分布频率[13];(b)累积孔径分布

    Figure  4.  Pore size distribution of the specimens added with different pure calcium aluminate cement: (a) pore frequency distribution[13]; (b) cumulative distribution of pore diameter

    图  5  各试样压力损失与气体流速曲线图[13](a)及其局部放大图(b)

    Figure  5.  Relationship between the pressure loss and airflow rate of specimens added with different pure calcium aluminate cement at room temperature[13] (a) and the partial enlarged detail (b)

    表  1  烧成试样的物理性能

    Table  1.   Physical properties of the sintering specimens

    试样编号 线变化率/ % 体积密度/ (g·cm-3) 显气孔率/ % 耐压强度/ MPa 高温抗折强度/ MPa
    C0 -0.43 ± 0.03 2.74 ± 0.01 27.8 ± 0.1 32.1 ± 1.1 5.8 ± 0.3
    C1 -0.36 ± 0.02 2.74 ± 0.02 27.1 ± 0.2 34.0 ± 0.7 6.0 ± 0.2
    C3 -0.31 ± 0.03 2.71 ± 0.02 27.5 ± 0.2 33.6 ± 0.6 6.2 ± 0.2
    C5 -0.19 ± 0.02 2.69 ± 0.01 27.8 ± 0.1 24.5 ± 1.5 5.8 ± 0.3
    C7 -0.05 ± 0.01 2.67 ± 0.02 28.4 ± 0.3 22.8 ± 2.0 5.4 ± 0.5
    下载: 导出CSV

    表  2  图 3(b)中各微区能谱分析结果

    Table  2.   Energy spectrum analysis of each zones in Fig. 3(b)

    图 3(b)能谱选区 原子数分数/ %
    Al O Ca
    1 39.12 57.73 3.15
    2 39.94 58.76 1.31
    3 39.98 60.02
    下载: 导出CSV

    表  3  渗流曲线基于Forchheimer’s方程的拟合结果

    Table  3.   Polynomial fitting results of Forchheimer's equation

    试样编号 k1 / (×10-10m2) k2 / (×10-6m) R2
    C0 2.27 1.41 0.9998
    C1 2.40 1.42 0.9998
    C3 2.54 1.46 0.9998
    C5 2.51 1.45 0.9999
    C7 2.23 1.40 0.9998
    下载: 导出CSV
  • [1] Huang A, Fu L P, Gu H Z, et al. Towards slag-resistant, anti-clogging and chrome-free castable for gas purging. Ceram Int, 2016, 42(16): 18674 doi: 10.1016/j.ceramint.2016.09.005
    [2] Long B, Xu G Y, Andreas B. Microstructure and physical properties of steel-ladle purging plug refractory materials. Int J Miner Metall Mater, 2017, 24(2): 186 doi: 10.1007/s12613-017-1394-5
    [3] Li Y B, Xiang D C, Li N. Current status and development of permeable-gas ceramics used in refining of aluminum melt. Refractories, 2005, 39(4): 292 doi: 10.3969/j.issn.1001-1935.2005.04.016

    李远兵, 向德成, 李楠. 铝熔体精炼用透气陶瓷的研究现状. 耐火材料, 2005, 39(4): 292 doi: 10.3969/j.issn.1001-1935.2005.04.016
    [4] Chen G, Yuan H B, Lü Z H. Application of nitrogen bottom-blowing porous brick in copper anode furnace. Nonferrous Met Extr Metall, 2015(3): 16 doi: 10.3969/j.issn.1007-7545.2015.03.005

    陈钢, 袁海滨, 吕忠华. 氮气底吹透气砖在铜阳极炉上的应用. 有色金属(冶炼部分), 2015(3): 16 doi: 10.3969/j.issn.1007-7545.2015.03.005
    [5] Chang Y N, Zhang L, Shao Z M. Research and development direction of purging plug for ladle. J Univ Sci Technol Liaoning, 2016, 39(3): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-ASGT201603005.htm

    常雅楠, 张玲, 邵子铭. 钢包用透气砖的研究与发展方向. 辽宁科技大学学报, 2016, 39(3): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-ASGT201603005.htm
    [6] Li Y Q. Calcium-Dialuminate/Calcium-Hexaluminate/Corundum Composite Refractories[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2004

    李有奇. CA2/CA6/刚玉复相耐火材料研究[学位论文]. 武汉: 武汉科技大学, 2004
    [7] Tomba Martinez A G, Luz A P, Braulio M A L, et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables. J Eur Ceram Soc, 2017, 37: 5023 doi: 10.1016/j.jeurceramsoc.2017.07.003
    [8] Luz A P, Consoni L B, Pagliosa C, et al. Sintering effect of calcium carbonate in high-alumina refractory castables. Ceram Int, 2018, 44(9): 10486 doi: 10.1016/j.ceramint.2018.03.066
    [9] Salomão R, Ferreira V L, de Oliveira I R, et al. Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates. J Eur Ceram Soc, 2016, 36(16): 4225 doi: 10.1016/j.jeurceramsoc.2016.05.026
    [10] Luz A P, Gabriel A H G, Consoni L B, et al. Self-reinforced high-alumina refractory castables. Ceram Int, 2018, 44: 2364 doi: 10.1016/j.ceramint.2017.10.205
    [11] Yin X L, Chen M, Wang N, et al. Improvement of densification and mechanical properties of MgAl2O4-CaAl4O7-CaAl12O19 composite by addition of MnO. Ceram Int, 2017, 43(5): 4706 doi: 10.1016/j.ceramint.2016.12.091
    [12] Liu X Y, Yang D X, Huang Z H, et al. In-situ synthesis of porous calcium hexa-aluminate ceramics and growth mechanism of the plate-like grains. Ceram Int, 2015, 41(10): 14727 doi: 10.1016/j.ceramint.2015.07.197
    [13] Xiong X, Wang Z F, Wang X T, et al. Correlations between pore structure parameters and gas permeability of corundum porous materials. J Am Ceram Soc, https://doi.org/10.1111/jace.16861 doi: 10.1111/jace.16861
    [14] Innocentini M D M, Pardo A R F, Pandolfelli V C. Influence of air compressibility on the permeability evaluation of refractory castables. J Am Ceram Soc, 2000, 83(6): 1536 doi: 10.1111/j.1151-2916.2000.tb01426.x
    [15] Innocentini M D M, Pardo A R F, Pandolfelli V C, et al. Permeability of high-alumina refractory castables based on various hydraulic binders. J Am Ceram Soc, 2010, 85(6): 1517 doi: 10.1111/j.1151-2916.2002.tb00306.x
    [16] Scheffler M, Colombo P. Cellular Ceramics: Structure, Manufacturing, Properties and Applications. Weinheim: Wiley-VCH, 2005
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  169
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-24
  • 刊出日期:  2019-12-27

目录

    /

    返回文章
    返回