HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响

谢俊彩 宋金鹏 高姣姣 曹磊

谢俊彩, 宋金鹏, 高姣姣, 曹磊. HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2019, 37(6): 416-421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
引用本文: 谢俊彩, 宋金鹏, 高姣姣, 曹磊. HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2019, 37(6): 416-421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
Citation: XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003

HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
基金项目: 

国家自然科学基金资助项目 51875388

国家自然科学基金资助项目 51405326

详细信息
    通讯作者:

    宋金鹏, E-mail: like128@163.com

  • 中图分类号: TQ174.7

Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials

More Information
  • 摘要: 以HfN为增强剂、Ni为金属添加剂, 通过真空热压烧结工艺制备了ZrB2-HfN陶瓷材料, 研究了HfN含量(质量分数)对ZrB2基陶瓷材料微观组织和力学性能的影响。结果表明: 随着HfN质量分数从5%增加到15%, ZrB2-HfN陶瓷材料的硬度和抗弯强度先增大后减小, 而断裂韧度逐渐增大; 当HfN质量分数为15%时, ZrB2-HfN陶瓷材料的断裂模式为穿晶断裂与沿晶断裂共存; 当HfN含量为10%时, ZrB2-HfN陶瓷材料具有较好的综合力学性能, 其硬度、抗弯强度和断裂韧度分别为: (16.47±0.24) GPa、(734.48±25) MPa和(5.37±0.20) MPa·m 1/2
  • 图  1  添加不同质量分数HfN的ZrB2–HfN陶瓷材料X射线衍射图谱

    Figure  1.  XRD patterns of ZrB2–HfN ceramic materials with different HfN content by mass

    图  2  ZrB2–HfN陶瓷材料的抛光面扫描电子显微形貌以及对应图 2(c)中不同位置的能谱分析图:(a)ZH1显微形貌;(b)ZH2显微形貌;(c)ZH3显微形貌;(d)图 2(c)A点能谱;(e)图 2(c)B点能谱;(f)图 2(c)C点能谱;

    Figure  2.  Surface SEM images of the ZrB2–HfN ceramic materials and the corresponding EDS: (a) ZH1 SEM image; (b) ZH2 SEM image; (c) ZH3 SEM image; (d) EDS of point A in Fig. 2(c); (e) EDS of point B in Fig. 2(c); (f) EDS of point C in Fig. 2(c)

    图  3  添加不同质量分数HfN的ZrB2–HfN陶瓷材料断口形貌图:(a)ZH1;(b)ZH2;(c)ZH3

    Figure  3.  Fracture morphologies of ZrB2–HfN ceramic materials with different HfN contents by mass: (a) ZH1; (b) ZH2; (c) ZH3

    表  1  ZrB2–HfN陶瓷材料的组分及配比(质量分数)

    Table  1.   Compositions of ZrB2–HfN ceramic materials %

    编号 ZrB2 HfN Ni
    ZH1 87 5 8
    ZH2 82 10 8
    ZH3 77 15 8
    下载: 导出CSV

    表  2  ZrB2–HfN陶瓷材料的相对密度和力学性能

    Table  2.   Relative densities and mechanical properties of ZrB2–HfN ceramic materials

    编号 相对密度/ % 维氏硬度/ GPa 抗弯强度/ MPa 断裂韧度/ (MPa·m1/2)
    ZH1 99.4 ± 0.2 15.08 ± 0.20 422.96 ± 23 4.67 ± 0.22
    ZH2 99.3 ± 0.1 16.47 ± 0.24 734.48 ± 25 5.37 ± 0.20
    ZH3 99.1 ± 0.3 14.67 ± 0.23 540.46 ± 21 5.81 ± 0.15
    下载: 导出CSV
  • [1] Song J G, Xu M H, Wang X Q, et al. Influence of YAG content on the properties of YAG-ZrB2 multi-phase ceramics. Powder Metall Technol, 2013, 31(5): 334 doi: 10.3969/j.issn.1001-3784.2013.05.003

    宋杰光, 徐明晗, 王秀琴, 等. YAG含量对ZrB2-YAG复相陶瓷的性能影响研究. 粉末冶金技术, 2013, 31(5): 334 doi: 10.3969/j.issn.1001-3784.2013.05.003
    [2] Song J G, Wang F, Wang R H, et al. Influence of reinforced phase on properties of ZrB2 ceramic matrix composite. Powder Metall Technol, 2016, 34(4): 243 doi: 10.3969/j.issn.1001-3784.2016.04.001

    宋杰光, 王芳, 王瑞花, 等. 增强相对二硼化锆陶瓷基复合材料性能的影响. 粉末冶金技术, 2016, 34(4): 243 doi: 10.3969/j.issn.1001-3784.2016.04.001
    [3] Mao X D, Bai L, Shen W P, et al. Preparation of ZrB2-SiC ceramic composites and testing of its resistance to thermal shock. Powder Metall Technol, 2008, 26(4): 260 http://pmt.ustb.edu.cn/article/id/fmyjjs200804004

    毛小东, 白玲, 沈卫平, 等. ZrB2-SiC复相陶瓷的制备及其耐热冲击性能的研究. 粉末冶金技术, 2008, 26(4): 260 http://pmt.ustb.edu.cn/article/id/fmyjjs200804004
    [4] Chen L M, Suo X B, Wang A Z, et al. Thermal shock resistance and failure mechanism of ZrB2-based ultra-high temperature ceramic composites-a short review. J Chin Ceram Soc, 2018, 46(9): 1235 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201809010.htm

    陈丽敏, 索相波, 王安哲, 等. ZrB2基超高温陶瓷材料抗热震性能及热震失效机制研究进展. 硅酸盐学报, 2018, 46(9): 1235 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201809010.htm
    [5] Guo Q L, Pei J J, Wang J, et al. Effects of the content of SiC on properties of ZrB2-SiC-Zr2Al4C5 composite ceramics. Rare Met Mater Eng, 2018, 47(Suppl 1): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1062.htm

    郭启龙, 裴军军, 王璟, 等. SiC含量对ZrB2-SiC-Zr2Al4C5复相陶瓷性能的影响. 稀有金属材料与工程, 2018, 47(增刊1): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1062.htm
    [6] Wang M F, Wang C A, Zhang X H. Effects of SiC platelet and ZrSi2 additive on sintering and mechanical properties of ZrB2-based ceramics by hot-pressing. Mater Des, 2012, 34: 293 doi: 10.1016/j.matdes.2011.08.016
    [7] Sonber J K, Murthy T S R Ch, Subramanian C, et al. Effect of CrSi2 and HfB2 addition on densification and properties of ZrB2. Int J Refract Met Hard Mater, 2012, 31: 125 doi: 10.1016/j.ijrmhm.2011.10.001
    [8] Li Y J, Li J, Liu H L, et al. Oxidation behavior of ZrB2-SiBCN composite ceramics at constant temperature. J Synth Cryst, 2016, 45(9): 2295 doi: 10.3969/j.issn.1000-985X.2016.09.022

    李亚静, 李婧, 刘洪丽, 等. ZrB2-SiBCN复合陶瓷恒温氧化行为研究. 人工晶体学报, 2016, 45(9): 2295 doi: 10.3969/j.issn.1000-985X.2016.09.022
    [9] Li Y Y, Li Q G, Wang Z, et al. Preparation of ZrB2-ZrC-SiC composite ceramic powder. J Univ Jinan Sci Technol, 2015, 29(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201501001.htm

    栗媛媛, 李庆刚, 王志, 等. ZrB2-ZrC-SiC复合陶瓷粉体制备工艺. 济南大学学报(自然科学版), 2015, 29(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201501001.htm
    [10] An J, Song J P, Liang G X, et al. Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials. Materials, 2017, 10(5): 461 doi: 10.3390/ma10050461
    [11] Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85 doi: 10.1016/j.jallcom.2018.04.213
    [12] Jing Y, Yuan H B, Lian Z S. Microstructure and mechanical properties of ZrB2-HfC ceramics influenced by HfC addition. Materials, 2018, 11: 2046 doi: 10.3390/ma11102046
    [13] Monteverde F, Fabbriche D D, Bellosi A. Zirconium diboride-based composites. Key Eng Mater, 2002, 206: 961 https://www.sciencedirect.com/science/article/pii/S0263436818305869
    [14] Yue X Y, Cai Z X, Lü X H, et al. Effect of Ni content on microstructures and mechanical properties of hot-pressed TiC-TiB2-Ni composite. Mater Sci Eng A, 2016, 668: 208 doi: 10.1016/j.msea.2016.05.053
    [15] Mousavi M J, Zakeri M, Rahimipour M R, et al. Effect of Ni and C additives on pressureless sintering and mechanical properties of ZrB2. Adv Appl Ceram, 2015, 114(5): 261 doi: 10.1179/1743676114Y.0000000227
    [16] Wang L M, Liu H L, Huang C Z, et al. Effects of sintering processes on mechanical properties and microstructure of Ti (C, N)-TiB2-Ni composite ceramic cutting tool material. Ceramic Int, 2014, 40(10): 16513 doi: 10.1016/j.ceramint.2014.08.003
    [17] Song J P, Jiang L K, Liang G X, et al. Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive. Ceramic Int, 2017, 43(11): 8202 doi: 10.1016/j.ceramint.2017.03.147
    [18] Zhao G L, Huang C Z, Liu H L, et al. Microstructure and mechanical properties of TiB2-SiC ceramic composites by reactive hot pressing. Int J Refract Met Hard Mater, 2014, 42: 36 doi: 10.1016/j.ijrmhm.2013.10.007
    [19] Gu M L, Huang C Z, Zou B, et al. Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials. Mater Sci Eng A, 2006, 433: 39 doi: 10.1016/j.msea.2006.07.012
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  63
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 刊出日期:  2019-12-27

目录

    /

    返回文章
    返回