铝基TiC–TiB2自蔓延高温合成复合涂层的组织性能研究

尤力 杨芳 石韬 秦乾 隋延力 郭志猛

尤力, 杨芳, 石韬, 秦乾, 隋延力, 郭志猛. 铝基TiC–TiB2自蔓延高温合成复合涂层的组织性能研究[J]. 粉末冶金技术, 2019, 37(6): 428-433, 443. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
引用本文: 尤力, 杨芳, 石韬, 秦乾, 隋延力, 郭志猛. 铝基TiC–TiB2自蔓延高温合成复合涂层的组织性能研究[J]. 粉末冶金技术, 2019, 37(6): 428-433, 443. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
YOU Li, YANG Fang, SHI Tao, QIN Qian, SUI Yan-li, GUO Zhi-meng. Study on microstructure and mechanical properties of TiC-TiB 2 composite coatings on Al matrix by self-propagating high-temperature synthesis[J]. Powder Metallurgy Technology, 2019, 37(6): 428-433, 443. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
Citation: YOU Li, YANG Fang, SHI Tao, QIN Qian, SUI Yan-li, GUO Zhi-meng. Study on microstructure and mechanical properties of TiC-TiB 2 composite coatings on Al matrix by self-propagating high-temperature synthesis[J]. Powder Metallurgy Technology, 2019, 37(6): 428-433, 443. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.005

铝基TiC–TiB2自蔓延高温合成复合涂层的组织性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
基金项目: 

中央高校基本科研业务费资助项目 FRF-TP-17-032A1

详细信息
    通讯作者:

    郭志猛, E-mail: zmguo@ustb.edu.cn

  • 中图分类号: TG142.71

Study on microstructure and mechanical properties of TiC-TiB 2 composite coatings on Al matrix by self-propagating high-temperature synthesis

More Information
  • 摘要: 以Ti粉、石墨粉、B4C粉、聚四氟乙烯粉(polytetrafluoroethylene, PTFE)为原料, 采用反应熔覆技术, 结合自蔓延高温合成与真空消失模鋳造法, 在ZL205A铝合金表面制备出TiC-TiB2复合涂层, 研究了固溶温度对基体和TiC-TiB2涂层显微组织、硬度和热稳定性的影响, 为制备高耐磨性铝合金提供新的研究方向。结果表明: Ti-C-B4C-PTFE体系的绝热温度的远大于1800 K, 自蔓延高温合成反应可自发进行; 通过真空消失模铸造ZL205A铝合金, 引发自蔓延高温合成反应, 在基体表面可形成TiC-TiB 2复合涂层。固溶热处理后TiC-TiB2复合涂层表现出良好的热稳定性, 硬度为HB 285, 20 N载荷作用下的质量损失量为49.7 mg, 相对减少了90%, 大大提高了ZL205A铝合金表面的耐磨性。
  • 图  1  Ti–C–B4C–PTFE体系绝热温度(Tad)与PTFE质量分数关系曲线

    Figure  1.  Relationship between the adiabatic temperature (Tad) and PTFE content by mass in Ti–C–B4C–PTFE system

    图  2  SHS反应前后涂层X射线衍射图谱

    Figure  2.  XRD patterns of coating before and after SHS reaction

    图  3  试样基体与涂层硬度

    Figure  3.  Hardness of Al matrix and composite coating

    图  4  不同固溶温度基体的显微组织:(a)未固溶处理;(b)518 ℃;(c)528 ℃;(d)538 ℃

    Figure  4.  Microstructures of Al matrix at different solution temperatures: (a) without solution treatment; (b) 518 ℃; (c) 528 ℃; (d) 538 ℃

    图  5  不同固溶温度涂层的显微组织:(a)未固溶处理;(b)518 ℃;(c)528 ℃;(d)538 ℃

    Figure  5.  Microstructures of composite coatings at different solution temperatures: (a) without solution treatment; (b) 518 ℃; (c) 528 ℃; (d) 538 ℃

    图  6  2号试样基体与涂层结合的扫描电子显微形貌:(a)低倍照片;(b)高倍照片

    Figure  6.  SEM images of sample 2 between coating and matrix: (a) low magnification; (b) high magnification

    图  7  2号试样基体与涂层耐磨性

    Figure  7.  Wear resistance of Al matrix and coating for sample 2

    表  1  基体ZL205A化学成分(质量分数)

    Table  1.   Chemical composition of ZL205A matrix  %

    Cu Ti Cd Mn V Al
    4.72 0.20 0.22 0.40 0.10 余量
    下载: 导出CSV

    表  2  涂层原料粉末粒度、纯度和成分质量分数

    Table  2.   Particle size, purity, and mass fraction of coating material powders

    元素 粒度/ μm 纯度/ % 质量分数/ %
    Ti ~45 ≥99.7 72.6
    B4C ~5 ≥99.0 19.5
    PTFE ~10 ≥99.0 4.0
    C ~10 ≥99.5 4.1
    下载: 导出CSV

    表  3  热处理工艺

    Table  3.   Heat treatment process

    试样编号 固溶处理 时效处理
    固溶温度/ ℃ 保温时间/ h 冷却介质 冷却温度/ ℃ 时效温度/ ℃ 保温时间/ h 冷却介质
    0 铸态,不经固溶处理
    1 518 10 60 150 8 空气
    2 528 10 60 150 8 空气
    3 538 10 60 150 8 空气
    4 548 10 60 150 8 空气
    下载: 导出CSV

    表  4  图 5(a)区域1和区域2能谱分析(原子数分数)

    Table  4.   EDS analysis of area 1 and area 2 in Fig. 5(a)  %

    位置 Al Ti B C
    1 51.97 48.03
    2 44.83 26.12 29.05
    下载: 导出CSV
  • [1] Nakai M, Eto T. New aspects of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng A, 2000, 285(1-2): 62 doi: 10.1016/S0921-5093(00)00667-5
    [2] Kuo V W C, Starke E A. The development of two texture variants and their effect on the mechanical behavior of a high strength P/M aluminum alloy, X7091. Metall Trans A, 1985, 16(6): 1089 doi: 10.1007/BF02811678
    [3] Jia P J, Chen B F. Application of ZL205A high strength and high-quality casting in large aircraft. J Mater Eng, 2009(1): 77 doi: 10.3969/j.issn.1001-4381.2009.01.018

    贾泮江, 陈邦峰. ZL205A合金高强优质铸件在大飞机上的应用. 材料工程, 2009(1): 77 doi: 10.3969/j.issn.1001-4381.2009.01.018
    [4] Wang S T, Zhao Z X, Tian Q H, et al. Study on heat treatment processing for ZL205A alloy. Hot Working Technol, 2005(5): 39 doi: 10.3969/j.issn.1001-3814.2005.05.015

    王松涛, 赵忠兴, 田庆海, 等. ZL205A合金热处理工艺研究. 热加工工艺, 2005(5): 39 doi: 10.3969/j.issn.1001-3814.2005.05.015
    [5] Li Y, Zhang G W, Xu H, et al. Study on heat treatment process for ZL205A alloy. Foundry Technol, 2017, 38(1): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201701018.htm

    李玉, 张国伟, 徐宏, 等. ZL205A合金热处理工艺研究. 铸造技术, 2017, 38(1): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201701018.htm
    [6] Shi Z Y, Wang D Q, Ding Z M. Surface strengthening pure copper by Ni-B coating. Appl Surf Sci, 2004, 221(1-4): 62 doi: 10.1016/S0169-4332(03)00753-0
    [7] Bi Y X, Zhao S, Xu X J. WC reinforced Ni-based composite coating prepared by high frequencyinduction heating sintering on the surface of 42CrMo. Powder Metall Technol, 2016, 34(6): 407 doi: 10.3969/j.issn.1001-3784.2016.06.002

    毕雅萱, 赵帅, 许新军. 42CrMo钢表面高频感应熔覆WC增强镍基复合涂层的研究. 粉末冶金技术, 2016, 34(6): 407 doi: 10.3969/j.issn.1001-3784.2016.06.002
    [8] Wu X, Guo Z M, Yu J P. Wear resistance of WC-12Co coating prepared by high velocity oxygen fuel spraying. Powder Metall Ind, 2014, 24(4): 31 doi: 10.3969/j.issn.1006-6543.2014.04.005

    吴旭, 郭志猛, 于继平. HVOF喷涂WC-12Co涂层及其摩擦磨损性能研究. 粉末冶金工业, 2014, 24(4): 31 doi: 10.3969/j.issn.1006-6543.2014.04.005
    [9] Tam K F, Cheng F T, Man H C. Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass. Mater Res Bull, 2002, 37(7): 1341 doi: 10.1016/S0025-5408(02)00766-3
    [10] Yuan Z Y, Zhang Z M, Li C S, et al. Microstructures of surface alloying layer prepared by evaporable pattern casting process. Ordn Mater Sci Eng, 2002, 25(4): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200204009.htm

    袁中岳, 张忠明, 李朝升, 等. 消失模法铸渗表面合金层组织研究. 兵器材料科学与工程, 2002, 25(4): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200204009.htm
    [11] Tsunekawa Y, Okumya M, Gotoh K, et al. Synthesis of iron aluminide matrix in situ composites from elemental powders by reactive low pressure plasma spraying. Mater Sci Eng A, 1992, 159(2): 253 doi: 10.1016/0921-5093(92)90296-D
    [12] Yan Y W, Wei B K, Lin H T, et al. The present status and developing trends of metal matrix in situ composites (Part I). Spec Cast Nonferrous Alloys, 1998(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ801.018.htm

    严有为, 魏伯康, 林汉同, 等. 金属基原位(In Situ)复合材料的研究现状及发展趋势(上). 特种铸造及有色合金, 1998(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ801.018.htm
    [13] Rathod S, Modi O P, Prasad B K, et al. Cast in situ Cu-TiC composites: Synthesis by SHS route and characterization. Mater Sci Eng A, 2009, 502(1-2): 91 doi: 10.1016/j.msea.2008.10.002
    [14] Li Y Y, Ni K Y, Zhu F W. Study of TiC particle-reinforced Cu matrix composites. Powder Metall Technol, 2018, 36(2): 106 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005

    李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究. 粉末冶金技术, 2018, 36(2): 106 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
    [15] Gao L, Guo Z M, Chen J, et al. TiC/FeCr reinforced steel matrix surface composites prepared by vacuum evaporative pattern casting (V-EPC) infiltration process. Powder Metall Ind, 2013, 23(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201303013.htm

    高琳, 郭志猛, 程军, 等. 真空消失模铸渗制备TiC/FeCr增强钢基表面复合材料. 粉末冶金工业, 2013, 23(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201303013.htm
    [16] Chen J, Gao K W, Guo Z M, et al. Effect of Ti/C ratio on microstructure and performance of in-situ synthesis TiC particles reinforced steel matrix surface composites. Ordn Mater Sci Eng, 2015, 38(3): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201503007.htm

    程军, 高克玮, 郭志猛, 等. 钛碳比对原位合成TiCP/钢基表面复合材料组织和性能的影响. 兵器材料科学与工程, 2015, 38(3): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201503007.htm
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  60
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-27
  • 刊出日期:  2019-12-27

目录

    /

    返回文章
    返回