球磨时间对锰方硼石显微结构和发光特性的影响

叶原丰 梁栋

叶原丰, 梁栋. 球磨时间对锰方硼石显微结构和发光特性的影响[J]. 粉末冶金技术, 2019, 37(6): 451-455. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.008
引用本文: 叶原丰, 梁栋. 球磨时间对锰方硼石显微结构和发光特性的影响[J]. 粉末冶金技术, 2019, 37(6): 451-455. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.008
YE Yuan-feng, LIANG Dong. Effect of milling time on microstructure and luminescent properties of chambersite[J]. Powder Metallurgy Technology, 2019, 37(6): 451-455. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.008
Citation: YE Yuan-feng, LIANG Dong. Effect of milling time on microstructure and luminescent properties of chambersite[J]. Powder Metallurgy Technology, 2019, 37(6): 451-455. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.008

球磨时间对锰方硼石显微结构和发光特性的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.008
基金项目: 

金陵科技学院高层次人才启动基金资助项目 jit-b-201824

详细信息
    通讯作者:

    梁栋, E-mail: ld_fans@126.com

  • 中图分类号: TQ128+.56

Effect of milling time on microstructure and luminescent properties of chambersite

More Information
  • 摘要: 使用三维震动高能球磨机对选矿后的锰方硼石粉末进行球磨, 球磨时间设定为30、40及50 min, 采用透射电子显微镜(transmission electron microscope, TEM)、扫描电子显微镜(scanning electron microscope, SEM)以及X射线衍射仪(X-raydiffraction, XRD)对球磨后锰方硼石粉末的形貌和结构进行表征, 利用Scherrer公式计算样品半高宽和晶粒尺寸, 并讨论球磨时间对锰方硼石发光特性的影响。结果表明, 锰方硼石经30、40、50 min高能球磨后, 样品粒径分别达到0.37、0.29、0.28 μm; 随球磨时间增加, 锰方硼石衍射峰明显宽化, (202)、(114)、(404)晶面的衍射峰强度明显降低, 晶面为不完全解理面; 锰方硼石样品发光强度随球磨时间增加明显降低。
  • 图  1  锰方硼石选矿后原始粉末扫描电子显微形貌和经高能球磨后透射电子显微形貌:(a)原始粉末扫描电子显微形貌;(b)球磨30 min透射电子显微形貌;(c)球磨40 min透射电子显微形貌;(d)球磨50 min透射电子显微形貌

    Figure  1.  Mcrostructures of chambersite powders after mineral separation and high-energy ball milling: (a) SEM image of raw powders; (b) TEM image of powders milled for 30 min; (c) TEM image of powders milled for 40 min; (d) TEM image of powders milled for 50 min

    图  2  锰方硼石原始粉末和球磨粉末X射线衍射谱图

    Figure  2.  XRD patterns of chambersite raw powders and ball-milled powders

    图  3  由Scherrer公式计算得到的锰方硼石晶粒尺寸及半高宽

    Figure  3.  Grain size and FWHM of chambersite powder particles calculated by the Scherrer formula

    图  4  原始粉末及球磨处理锰方硼石试样在470 nm波长激发下的发射光谱

    Figure  4.  Emission spectra of the raw and milled chambersite samples exited at 470 nm wavelength

  • [1] Grice J D, Burns P C, Hawthorne F C, et al. Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. Can Mineral, 1999, 37(3): 731 https://pubs.geoscienceworld.org/canmin/article-abstract/37/3/731/13143/borate-minerals-ii-a-hierarchy-of-structures-based
    [2] Luce J L, Schaffers K I, Keszler D A, et al. Structure of the borate Li14Be5B (BO3)9. Inorg Chem, 2002, 33(11): 2453 http://www.researchgate.net/publication/231340219_Structure_of_the_borate_Li14Be5BBO39
    [3] Liu Y F, Yang Z P, Yu Q M, et al. Luminescence properties of Ba2LiB5O10: Dy3+ phosphor. Mater Lett, 2011, 65(12), 1956 doi: 10.1016/j.matlet.2011.04.002
    [4] Chen C, Bowen D T, Giagounidis A A, et al. Identification of disease-and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del (5q). Leukemia, 2010, 24(11): 1875 doi: 10.1038/leu.2010.182
    [5] Prokhorov А A, Chernush L F, Minyakaev R, et al. Structural and magnetic properties of YAl3(BO3)4 and EuAl3(BO3)4 single crystals doped with Co2+. J Alloys Compd, 2018, 765: 710 doi: 10.1016/j.jallcom.2018.06.149
    [6] Lü X S, Wei L, Wang X P, et al. Crystal growth, electronic structure and optical properties of Sr2Mg (BO3)2. J Solid State Chem, 2018, 258: 283 doi: 10.1016/j.jssc.2017.10.032
    [7] Frolov K V, Lyubutin I S, Alekseeva O A, et al. Dynamics of structural and magnetic phase transitions in ferroborate YFe3(BO3)4. J Alloys Compd, 2018, 748: 989 doi: 10.1016/j.jallcom.2018.03.243
    [8] Yu H, Deng D G, Su W T, et al. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2. Opt Mater, 2018, 80: 160 doi: 10.1016/j.optmat.2018.04.035
    [9] Cheng Z Y, Yu J J, Zhang Y J, et al. Luminescence and energy transfer mechanism of α-Ba3Y (BO3)3: Ce3+, Tb3+. J Lumin, 2017, 192: 1004 doi: 10.1016/j.jlumin.2017.08.041
    [10] Xu R, Liang Y J, Liu S Q, et al. Structure and luminescence properties of Ce3+ doped KBa1−x(Mg/Zn)xY (BO3)2 and K1−yNayBaY (BO3)2 phosphors evolved from cation substitution. Opt Laser Technol, 2017, 93: 41 doi: 10.1016/j.optlastec.2017.01.027
    [11] Wang Q S, Xu H, Gao S, et al. Synthesis of the rare mineral chambersite and its ore deposit geological significance. Earth Sci Front, 2013, 20(3): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303016.htm

    王秋舒, 许虹, 高燊, 等. 稀有矿物锰方硼石的合成及其矿床地质意义. 地学前缘, 2013, 20(3): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303016.htm
    [12] Liang D, Cao L, Jia C C, et al. Preparation and property of Mn3B7O13Cl microwave attenuation powders. Adv Mater Res, 2015, 1081: 156 http://www.researchgate.net/publication/273194640_Preparation_and_Property_of_Mn3B7O13Cl_Microwave_Attenuation_Powders
    [13] Xiong S, Liang D, Cao L, et al. Microstructure and luminescence characteristics of self-doped nano-Mn3B7O13Cl crystal. Mater Lett, 2016, 178: 87 doi: 10.1016/j.matlet.2016.04.196
    [14] Gong L L, Cao L, Jia C C, et al. Friction properties of chambersite. J Univ Sci Technol Beijing, 2014, 36(3): 354 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201403012.htm

    龚立丽, 曹林, 贾成厂, 等. 锰方硼石的摩擦性能. 北京科技大学学报, 2014, 36(3): 354 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201403012.htm
    [15] Gong L L, Cao L, Jia C C, et al. Effect of chambersite on friction and wear behavior of Cu-based friction material. Powder Metall Technol, 2013, 31(4): 279 doi: 10.3969/j.issn.1001-3784.2013.04.008

    龚立丽, 曹林, 贾成厂, 等. 锰方硼石对铜基摩擦材料摩擦性能的影响. 粉末冶金技术, 2013, 31(4): 279 doi: 10.3969/j.issn.1001-3784.2013.04.008
    [16] Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005

    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005
    [17] Borc J, Sangwal K. On the perfection of cleavage planes of potassium bichromate single crystals. Surf Sci, 2007, 601(4): 1160 doi: 10.1016/j.susc.2006.12.033
    [18] Yanagimoto F, Shibanuma K, Suzuki K, et al. Local stress in the vicinity of the propagating cleavage crack tip in ferritic steel. Mater Des, 2018, 144: 361 doi: 10.1016/j.matdes.2018.02.037
    [19] Xu Z, Gu W B, Feng H, et al. Enhancement of structure stability and luminescence intensity of LiYF4: Ln3+ nanocrystals. J Rare Earths, 2017, 35(9): 844 doi: 10.1016/S1002-0721(17)60985-2
    [20] Santos H D A, Novais S M V, Jacinto C, et al. Optimizing the Nd: YF3 phosphor by impurities control in the synthesis procedure. J Lumin, 2018, 201: 156 doi: 10.1016/j.jlumin.2018.04.051
  • 加载中
图(4)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  32
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 刊出日期:  2019-12-27

目录

    /

    返回文章
    返回