粉末冶金法制备铝基碳化硼复合材料的研究进展

陈锦 熊宁 葛启录 王铁军 蔡静

陈锦, 熊宁, 葛启录, 王铁军, 蔡静. 粉末冶金法制备铝基碳化硼复合材料的研究进展[J]. 粉末冶金技术, 2019, 37(6): 461-467. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.010
引用本文: 陈锦, 熊宁, 葛启录, 王铁军, 蔡静. 粉末冶金法制备铝基碳化硼复合材料的研究进展[J]. 粉末冶金技术, 2019, 37(6): 461-467. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.010
CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing. Research on powder metallurgy process for preparing aluminum matrix boron carbide composites[J]. Powder Metallurgy Technology, 2019, 37(6): 461-467. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.010
Citation: CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing. Research on powder metallurgy process for preparing aluminum matrix boron carbide composites[J]. Powder Metallurgy Technology, 2019, 37(6): 461-467. doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.010

粉末冶金法制备铝基碳化硼复合材料的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.010
详细信息
    通讯作者:

    陈锦, E-mail: chenjin@atmcn.com

  • 中图分类号: TG146.2

Research on powder metallurgy process for preparing aluminum matrix boron carbide composites

More Information
  • 摘要: 本文归纳了粉末冶金法制备铝基碳化硼复合材料的制备工艺, 主要包含混料、压制、烧结、变形等工艺环节; 对铝基碳化硼复合材料主要性能及影响因素做了阐述, 重点整理了材料均匀性、相对密度、力学性能的研究情况; 总结了工程用铝基碳化硼材料的生产及使用情况, 分析几种常见铝基碳化硼产品的特点; 提出采用粉末冶金法生产大尺寸、高品质、低成本的铝基碳化硼材料是未来研究方向之一的观点, 并阐述了工艺优化方案。在核电等相关产业的带动下, 中国有望成为全球铝基碳化硼复合材料生产和研究中心。
  • 图  1  经1100 K烧结160 h制备的Al‒B4C显微形貌[8]

    Figure  1.  SEM photograph of Al‒B4C sample reacted at 1100 K for 160 h[8]

    图  2  B‒C‒Al等温截面图(1273 K)[8]

    Figure  2.  Al‒B‒C isothermal section at 1273 K[8]

    图  3  B4C和Al反应差热分析曲线[9]

    Figure  3.  Differential thermal analysis curve for the reaction of B4C and Al[9]

    图  4  B4C和Al反应产物X射线衍射谱[9]

    Figure  4.  X-ray diffraction spectrum of B4C and Al reaction product[9]

    图  5  Al‒31%B4C板材(3 mm × 200 mm × 5000 mm)[11]

    Figure  5.  Al‒31%B4C flats(3 mm × 200 mm × 5000 mm)[11]

    图  6  Al‒31%B4C板材金相照片[11]

    Figure  6.  Metallograph of Al‒31%B4C flats

    图  7  热压工艺对Al‒B4C相对密度的影响

    Figure  7.  Effects of hot-pressing on the relative density of Al‒B4C composites

    图  8  B4C质量分数对Al‒B4C相对密度的影响

    Figure  8.  Effect of B4C mass fraction on the relative density of Al‒B4C composites

    图  9  BORAL®的横截面微观照片[20]

    Figure  9.  Microphotograph of the Trimmed Edge of BORAL®[20]

    图  10  BORAL®样品的表面起泡[20]

    Figure  10.  Blisters in BORAL® Coupon Manufactured in the 1990s[20]

    图  11  Al‒31%B4C板材(3 mm × 190 mm × 4370 mm)

    Figure  11.  Al‒31%B4C flats (3 mm × 190 mm × 4370 mm)

    图  12  乏燃料格架

    Figure  12.  Spent fuel storage rack

    表  1  含不同质量分数B4C的复合材料密度[11, 1516]

    Table  1.   Density of Al-B4C composite with different mass fraction of B4C[11, 1516]

    材料 B4C质量分数/ % 工艺 密度,ρ / (g·cm-3) 相对密度/ %
    理论值,ρ 测量值,ρ
    铝基碳化硼复合材料 10 2.681 2.624 97.8
    20 2.662 2.596 97.5
    30 2.643 2.582 97.4
    40 2.592 2.520 97.2
    30 2.643 2.640 99.87
    31 2.641 2.638 99.9
    注:工艺①为热压(500~620 ℃)+ 轧制+ T6;工艺②为热压(530 ℃)+ T6;工艺③为热等静压工艺
    下载: 导出CSV

    表  2  B4C‒Al板拉伸性能[1617]

    Table  2.   Tensile properties of Al‒B4C plates[1617]

    材料 B4C质量分数/ % 工艺 抗拉强度/ MPa 屈服强度/ MPa 断后延伸率/
    %
    6061Al 0 310 270 15.0
    6061Al‒B4C 10 295 250 8.8
    6061Al‒B4C 20 271 224 4.0
    6061Al‒B4C 30 255 186 3.2
    6061Al‒B4C 40 232 163 2.0
    包壳包覆Al‒B4C 30 167 139 5.0
    6061Al‒B4C 31 302 197 3.2
    注:工艺①为热压(500~620 ℃)+ 轧制+ T6;工艺②为铝壳包覆+ 轧制;工艺③为热等静压(500 ℃ + 轧制)
    下载: 导出CSV
  • [1] Chen B M, Zhang Z Y, An L, et al. Research development of wear resistance of aluminum matrix composites under the condition of dry sliding friction. Powder Metall Technol, 2013, 31(6): 455 doi: 10.3969/j.issn.1001-3784.2013.06.011

    陈百明, 张振宇, 安亮, 等. 铝基金属复合材料在干摩擦条件下的抗磨损性能的研究进展. 粉末冶金技术, 2013, 31(6): 455 doi: 10.3969/j.issn.1001-3784.2013.06.011
    [2] Alizadeh M. Comparison of nanostructured A1/B4C composite produced by ARB and Al/B4C composite produced by RRB process. Mater Sci Eng A, 2010, 528(2): 578 doi: 10.1016/j.msea.2010.08.093
    [3] Tuncer N, Tasdelen B, Arslan G. Effect of passivation and precipitation hardening on processing and mechanical properties of B4C‒A1 composites. Ceram Int, 201l, 37(7): 2861 doi: 10.1016/j.ceramint.2011.05.007
    [4] Carden R A, Calif C M. Fabrication Methods for Metal Matrix Composites: US Patent, 674166. 1996‒7‒1
    [5] Arslan G, Kara F, Turan S. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminum composites. J Eur Ceram Soc, 2003, 23(8): 1243 doi: 10.1016/S0955-2219(02)00304-7
    [6] Topcu I, Gulsoy H O, Kadioglu N, et al. Processing and mechanical properties of B4C reinforced Al matrix composites. J Alloys Compd, 2009, 482(1-2): 516 doi: 10.1016/j.jallcom.2009.04.065
    [7] Khakbiz M, Akhlaghi F. Synthesis and structural characterization of Al‒B4C nano-composite powders by mechanical alloying. J Alloys Compd, 2009, 479(1-2): 334 doi: 10.1016/j.jallcom.2008.12.076
    [8] Viala J C, Boulx J, Gonzalez G, et al. Chemical reactivity of aluminum with boron carbide. J Mater Sci, 1997, 32(17): 4559 doi: 10.1023/A:1018625402103
    [9] Peng K W, Wu W Y, Xu J Y, et al. Study of chemical reaction and phase composition of B4C and Al under high temperature. Rare Met Cem Carbides, 2008, 36(1): 16 doi: 10.3969/j.issn.1004-0536.2008.01.004

    彭可武, 吴文远, 徐璟玉, 等. B4C和Al在高温条件下的化学反应及相组成的研究. 稀有金属与硬质合金, 2008, 36(1): 16 doi: 10.3969/j.issn.1004-0536.2008.01.004
    [10] Zhang P, Zhang Z W, Li Y L, et al. Microstructure and mechanical properties of high content B4C-aluminium composites fabricated by hot-pressing sintering. Mater Sci Eng Powder Metall, 2014, 19(1): 95 doi: 10.3969/j.issn.1673-0224.2014.01.016

    张鹏, 张哲维, 李宇力, 等. 热压法制备高含量B4C/铝基复合材料的显微结构和力学性能. 粉末冶金材料科学与工程, 2014, 19(1): 95 doi: 10.3969/j.issn.1673-0224.2014.01.016
    [11] Wang T J, Liu G H, Liu G R, et al. A Method for Preparing Neutron Absorber Plate by Hot Isostatic Pressure Welding: China Patent, 201510515626.0. 2015‒08‒20

    王铁军, 刘国辉, 刘桂荣, 等. 一种利用热等静压焊接工艺制备中子吸收板的方法: 中国专利, 201510515626.0. 2015‒08‒20
    [12] Li Y L, Zhang P, Gao Z P, et al. Effect of B4C particle size on strength of B4C/6061Al compositions. Mater Sci Eng Powder Metall, 2012, 17(5): 611 doi: 10.3969/j.issn.1673-0224.2012.05.011

    李宇力, 张鹏, 高占平, 等. B4C颗粒增强相粒度对铝基体复合板材强度的影响. 粉末冶金材料科学与工程, 2012, 17(5): 611 doi: 10.3969/j.issn.1673-0224.2012.05.011
    [13] Shen C L, Shi J M, Zhang L, et al. Effect of ball milling technics on B4C‒Al composite performance. J Funct Mater, 2011, 42(Suppl 2): 365 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S2044.htm

    沈春雷, 石建敏, 张玲, 等. 球磨工艺对B4C‒Al复合粉末性能的影响. 功能材料, 2011, 42(增刊2): 365 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S2044.htm
    [14] Jian M, Fu D G, Wang M L, et al. Effect of extrusion process on microstructure of B4C/Al‒Si composites. Nucl Power Eng, 2012, 33(Suppl 2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2012S2022.htm

    简敏, 付道贵, 王美玲, 等. 挤压工艺对B4C/Al‒Si复合材料微观组织的影响. 核动力工程, 2012, 33(增刊2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2012S2022.htm
    [15] Yuan N, Mou H H, Ni D, et al. Mechanical properties of B4C/Al composites for neutron absorption fabricated by rapid hot-pressing. Mater Sci Eng Powder Metall, 2016, 21(4): 589 doi: 10.3969/j.issn.1673-0224.2016.04.012

    袁楠, 牟浩瀚, 倪狄, 等. 快速热压法制备B4C/Al中子吸收材料的力学性能. 粉末冶金材料科学与工程, 2016, 21(4): 589 doi: 10.3969/j.issn.1673-0224.2016.04.012
    [16] Gao Z P, Wang W X, Li Y L, et al. Microstructure and mechanical behavior of B4C‒aluminium composite. Hot Working Technol, 2012, 41(20): 89 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201220026.htm

    高占平, 王文先, 李宇力, 等. B4C颗粒增强铝基复合材料微观形貌和力学行为分析. 热加工工艺, 2012, 41(20): 89 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201220026.htm
    [17] Li G, Wang M L. Tensile properties and fracture characteristics of B4C/Al neutron absorber materials. Hot Working Technol, 2012, 41(22): 129 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201222036.htm

    李刚, 王美玲. B4C/Al中子吸收材料的拉伸性能及断口特征. 热加工工艺, 2012, 41(22): 129 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201222036.htm
    [18] Ji Q, Wang N, Luan Y J, et al. Research of high cycle fatigue behavior of boron carbide reinforced 2009 aluminum matrix composites. Synth Mater Aging Appl, 2016, 45(3): 62 doi: 10.3969/j.issn.1671-5381.2016.03.015

    纪强, 王娜, 栾运加, 等. B4C/2009Al复合材料的高周疲劳性能研究. 合成材料老化与应用, 2016, 45(3): 62 doi: 10.3969/j.issn.1671-5381.2016.03.015
    [19] Tan G L, Lu K K, Shi L B. Introduction to boron‒aluminum material for spent-fuel storage racks and transport cask in LWR nuclear power plants. Mater Rep, 2014, 28(24): 466 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2014S2119.htm

    谭功理, 卢可可, 石立波. 轻水堆核电站乏燃料贮存格架及运输容器用硼铝材料介绍. 材料导报, 2014, 28(24): 466 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2014S2119.htm
    [20] Wierschke J B. Evaluation of Aluminum‒Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel[Dissertation]. Ann Arbor: The University of Michigan, 2015
    [21] Mohanty R M, Balasubramanianan K, Seshadri S K. Boron carbide-reinforced aluminum 1100 matrix composites: Fabrication and properties. Mater Sci Eng A, 2008, 498(2): 42 https://www.sciencedirect.com/science/article/abs/pii/S0921509308007181
    [22] Kang P C, Cao Z W, Wu G H, et al. Phase identification of Al‒B4C ceramic composites synthesized by reaction hot-press sintering. Int J Refract Met Hard Mater, 2010, 28(2): 297 doi: 10.1016/j.ijrmhm.2009.11.004
    [23] Wang X J, Ma N G, Jing H D, et al. Wettability of Al on B4C substrate. Mater Mech Eng, 2008, 32(5): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC200805004.htm

    王希军, 马南钢, 丁华东, 等. 铝在B4C陶瓷上的润湿性. 机械工程材料, 2008, 32(5): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC200805004.htm
    [24] Zhang Z, Fortin K, Charette A, et al. Effect of titanium on microstructure and fluidity of Al-B4C composites. J Mater Sci, 2011, 46(9): 3176 doi: 10.1007/s10853-010-5201-1
    [25] Electric Power Research Institute. Industry Spent Fuel Storage Handbook. California: Electric Power Research Institute, 2010
    [26] Kim K, Chung S, Hong J. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack. Nucl Eng Technol, 2018, 50(5): 788 doi: 10.1016/j.net.2018.01.017
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  158
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 刊出日期:  2019-12-27

目录

    /

    返回文章
    返回