铜基粉末冶金摩擦材料的应用及展望

方小亮 郑合静

方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望[J]. 粉末冶金技术, 2020, 38(4): 313-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019040008
引用本文: 方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望[J]. 粉末冶金技术, 2020, 38(4): 313-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019040008
FANG Xiao-liang, ZHENG He-jing. Application and prospect of copper-based powder metallurgy friction materials[J]. Powder Metallurgy Technology, 2020, 38(4): 313-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019040008
Citation: FANG Xiao-liang, ZHENG He-jing. Application and prospect of copper-based powder metallurgy friction materials[J]. Powder Metallurgy Technology, 2020, 38(4): 313-318. doi: 10.19591/j.cnki.cn11-1974/tf.2019040008

铜基粉末冶金摩擦材料的应用及展望

doi: 10.19591/j.cnki.cn11-1974/tf.2019040008
详细信息
    通讯作者:

    方小亮, E-mail: bolinfxl@vip.163.com

  • 中图分类号: TG146.1+1

Application and prospect of copper-based powder metallurgy friction materials

More Information
  • 摘要: 铜基粉末冶金摩擦材料以其在制动方面的优越性能获得了广泛地应用。本文阐述了铜基粉末冶金摩擦材料的使用要求, 系统地介绍了铜基粉末冶金摩擦材料在飞机、高速列车、风力发电和汽车等领域的应用现状, 并对铜基粉末冶金摩擦材料的未来发展进行了展望, 为铜基粉末冶金摩擦材料的进一步的发展提供参考。
  • 图  1  铜基粉末冶金摩擦材料飞机刹车盘

    Figure  1.  Aircraft brake disc of copper-based powder metallurgy friction materials

    图  2  高速列车用铜基粉末冶金制动刹车片

    Figure  2.  Copper-based powder metallurgy brake pad for high-speed train

    图  3  铜基粉末冶金制动刹车片摩擦因数与制动速度之间的关系[11]

    Figure  3.  Relationship between the friction coefficient and the braking speed of the copper-based powder metallurgy brake pad[11]

    图  4  铜基粉末冶金制动刹车片平均摩擦因数[13]

    Figure  4.  Average friction coefficient of the copper-based powder metallurgy brake pad[13]

    图  5  不同型号的风电机组用铜基粉末冶金摩擦片[14]: (a)SYFS-20D;(b)SYFS-05C;(c)SYFS-07B

    Figure  5.  Copper-based powder metallurgical friction discs for wind turbine in different type[14]: (a)SYFS-20D;(b)SYFS-05C;(c)SYFS-07B

    图  6  干式(a)和湿式(b)铜基粉末冶金摩擦片

    Figure  6.  Dry(a)and wet(b)copper-based powder metallurgy friction discs

    表  1  国内典型飞机用铜基粉末冶金摩擦材料的基本组成及其物理性能

    Table  1.   Composition and physical properties of the typical copper-based powder metallurgy friction materials for aircraft in China

    牌号 机种 材料成分(质量分数)/% 密度/(g·cm-3) 抗拉强度/MPa 抗压强度/MPa 硬度,HRF
    Cu Fe C SiO2 其他
    SFCu-1 歼击机 余量 10~14 5~10 4~8 4~11 6.0~6.4 20~39 226~245 40~65
    703 民航机 余量 8~10 6~12 2~4 6~10 6.0~6.3 20~39 245~294 30~55
    F835 直升机 余量 9~13 5~9 6~10 6~12 5.9~6.4 - - 40~60
    下载: 导出CSV

    表  2  国内典型飞机用铜基粉末冶金摩擦材料的摩擦磨损性能

    Table  2.   Friction and wear properties of the typical copper-based powder metallurgy friction materials for aircraft in China

    牌号 试验条件 试验结果 对偶件材料
    刹车压力/MPa 刹车速度/(m·s-1 平均摩擦因数 材料磨损量/(mm·次-1)
    SFCu-1 0.45 28 0.24 0.0054~0.0072 30CrSiMoVA
    703 0.76 10 0.24 0.0037 粉末冶金
    F835 5.10 4 0.23 0.0030 合金铸铁
    下载: 导出CSV

    表  3  国内典型的汽车用铜基粉末冶金摩擦材料及其物理性能[20]

    Table  3.   Physical properties of the typical copper-based powder metallurgy friction materials for automobiles in China[20]

    牌号 成分(质量分数)/% 密度/(g·cm-3) 硬度,HB 抗压强度/MPa 抗拉强度/MPa 应用
    Cu Sn Fe Pb 石墨 SiO2
    FM-101S 69 8 6 8 6 3 5.8~6.4 20~60 > 200 > 30 拖拉机主离合器、载重汽车湿式离合器
    FM-102S 75 3 8 5 5 4 5.5~6.4 30~60 > 200 > 30 载重汽车的液力变速箱离合器
    FM-103G 68 5 8 10 4 5.5~6.4 25~50 > 150 > 30 干式离合器和制动器
    FM-104S 73 8.5 8 4 4 2.5 5.8~6.4 20~60 > 200 > 30 12V-180型1000HP柴油机等传动装置半干式离合器
    FM-105G 64 7 8 8 8 5 5.5~6.2 15~55 > 100 > 20 拖拉机、齿轮箱等干式离合器
    FM-106G 72 10 5 3 2 8 5.5~6.2 25~65 > 200 > 30 DLM2、DLM4型等系列机床的干式电磁离合器和制动器
    下载: 导出CSV
  • [1] Kolluri D, Ghosh A K, Bijwe J. Analysis of load-speed sensitivity of friction composites based on various synthetic graphite. Wear, 2009, 266(1): 266 http://www.sciencedirect.com/science/article/pii/S004316480800344X
    [2] Lu N G. The present state and tendency of sintered friction materials in the world. Powder Metall Technol, 2002, 20(5): 294 doi: 10.3321/j.issn:1001-3784.2002.05.008

    鲁乃光. 烧结金属摩擦材料现状与发展动态. 粉末冶金技术, 2002, 20(5): 294 doi: 10.3321/j.issn:1001-3784.2002.05.008
    [3] Mou C. Effect of Braking Condition on the Friction and Wear Properties of Brake Pad[Dissertation]. Dalian: Dalian Jiaotong University, 2008

    牟超. 摩擦条件对制动闸片摩擦磨损性能的影响[学位论文]. 大连: 大连交通大学, 2008
    [4] Han F L. Basic Course of Powder Metallurgy. Guangzhou: South China University of Technology Press, 2004

    韩凤麟. 粉末冶金基础教程. 广州: 华南理工大学出版社, 2004
    [5] Cai K J, He Y L, Lü F, et al. Probe into powder metallurgy brake material of plane development in future. Aviat Precis Manuf Technol, 2007, 43(5): 48 doi: 10.3969/j.issn.1003-5451.2007.05.013

    蔡康健, 何永乐, 吕锋, 等. 飞机粉末冶金摩擦材料未来发展的探讨. 航空精密制造技术, 2007, 43(5): 48 doi: 10.3969/j.issn.1003-5451.2007.05.013
    [6] Yao P P, Zhang Z Y, Wang L, et al. Effect of sintering temperature on frictional wear behavior of iron-based powder metallurgy aircraft brake materials. Lubr Eng, 2007, 32(6): 1 doi: 10.3969/j.issn.0254-0150.2007.06.001

    姚萍屏, 张忠义, 汪琳, 等. 烧结温度对铁基粉末冶金航空刹车材料摩擦磨损性能的影响. 润滑与密封, 2007, 32(6): 1 doi: 10.3969/j.issn.0254-0150.2007.06.001
    [7] Yuan G Z, Wang L, Xie J F, et al. Influence of mixing time on characteristics of aircraft friction materials. Powder Metall Technol, 2004, 22(1): 26 doi: 10.3321/j.issn:1001-3784.2004.01.007

    袁国洲, 汪琳, 谢剑峰, 等. 混料时间对航空刹车摩擦材料性能的影响. 粉末冶金技术, 2004, 22(1): 26 doi: 10.3321/j.issn:1001-3784.2004.01.007
    [8] Wang G D, Fang Y C, Luo X Y. Research and development of materials for friction braking on high speed train. Chin Metall, 2007, 17(7): 12 doi: 10.3969/j.issn.1006-9356.2007.07.003

    王广达, 方玉诚, 罗锡裕. 高速列车摩擦制动材料的研究进展. 中国冶金, 2007, 17(7): 12 doi: 10.3969/j.issn.1006-9356.2007.07.003
    [9] Ren Z J. A review of R&D of powder metallurgic friction materials. Locomot Rolling Stock Technol, 2001(6): 1 doi: 10.3969/j.issn.1007-6034.2001.06.001

    任志俊. 粉末冶金摩擦材料的研究发展概况. 机车车辆工艺, 2001(6): 1 doi: 10.3969/j.issn.1007-6034.2001.06.001
    [10] Wang X F, Xu G S, Han J, et al. Effect of zirconium dioxide addition on friction and wear properties of Cu-based friction materials. Powder Metall Technol, 2013, 31(1): 22 doi: 10.3969/j.issn.1001-3784.2013.01.005

    王秀飞, 许桂生, 韩娟, 等. 添加ZrO2对铜基摩擦材料摩擦磨损性能的影响. 粉末冶金技术, 2013, 31(1): 22 doi: 10.3969/j.issn.1001-3784.2013.01.005
    [11] Zhao T C, Meng F A, Pei L G. Fabrication of metal-matrix ceramics composite brake for high-speed trains. J Shijiazhuang Railway Inst, 2004, 17(1): 64 doi: 10.3969/j.issn.2095-0373.2004.01.015

    赵田臣, 孟凡爱, 裴龙刚. 高速列车金属陶瓷复合材料制动闸片研制. 石家庄铁道学院学报, 2004, 17(1): 64 doi: 10.3969/j.issn.2095-0373.2004.01.015
    [12] Gao F, Song B Y, Fu R, et al. Study on the particle reinforced Cu matrix brake pads for 300 km·h-1 high speed trains. China Railway Sci, 2007, 28(3): 62 doi: 10.3321/j.issn:1001-4632.2007.03.012

    高飞, 宋宝韫, 符蓉, 等. 时速300 km高速列车铜基粒子强化闸片的研究. 中国铁道科学, 2007, 28(3): 62 doi: 10.3321/j.issn:1001-4632.2007.03.012
    [13] Wang L, Pan Q R, Zhu S, et al. Fabrication of copper-based powder metallurgy brake pad for high-speed train and its friction and wear property. Mater Mech Eng, 2017, 41(6): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201706013.htm

    王磊, 潘祺睿, 朱松, 等. 高速列车铜基粉末冶金闸片的制备及摩擦磨损性能. 机械工程材料, 2017, 41(6): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201706013.htm
    [14] Fan K Y. Study on Copper-Based Powder Metallurgy Friction Materials and Corrosion Resistance for Offshore Wind Turbines[Dissertation]. Changsha: Central South University, 2011

    樊坤阳. 海基风电机组用铜基粉末冶金摩擦材料及其耐蚀性研究[学位论文]. 长沙: 中南大学, 2011
    [15] Han W W. Design and Fabrication of Copper-Base Powder Metallurgy Friction Material for Braking of High Speed Train[Dissertation]. Nanchang: Nanchang University, 2018

    韩委委. 高速制动铜基粉末冶金摩擦材料的设计及制备[学位论文]. 南昌: 南昌大学, 2018
    [16] Wang F H, Liu Y. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber. Mater Des, 2014, 57: 449 doi: 10.1016/j.matdes.2014.01.017
    [17] Yu X, Guo Z M, Hao J J, et al. Preparation and properties of copper-based powder metallurgy brake pad for wind turbine. Mater Sci Eng Powder Metall, 2014, 19(1): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201401011.htm

    于潇, 郭志猛, 郝俊杰, 等. 风电用铜基粉末冶金制动闸片的制备与性能. 粉末冶金材料科学与工程, 2014, 19(1): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201401011.htm
    [18] Yao P P. The Preparation Technology of a Copper-Based Powder Metallurgy Brake Pad for High Power Wind Turbine: China Patent, 10186011. 2010-11-03

    姚萍屏. 一种大功率风电机组用铜基粉末冶金制动闸片的制备工艺: 中国专利, 10186011. 2010-11-03
    [19] Liu B W, Yang Y, Zhang Y F. Effect of copper-tin alloy powder content on properties of automotive friction material. Chin J Nonferrous Met, 2017, 27(1): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201701016.htm

    刘伯威, 杨阳, 张逸帆. 铜锡合金粉含量对汽车摩擦材料性能的影响. 中国有色金属学报, 2017, 27(1): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201701016.htm
    [20] Gong T M, Yao P P, Xiao Y L, et al. Wear map for a copper-based friction clutch material under oil lubrication. Wear, 2015, 328-329: 270 http://smartsearch.nstl.gov.cn/paper_detail.html?id=88e8579d91f1c8cae2ac872b778f2de3
    [21] Guan Q F, Li X Y, Li G Y, et al. The friction and wear behaviors of carbon fiber reinforced antifriction material. Tribology, 1999, 19(1): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX901.016.htm

    关庆丰, 李晓宇, 李光玉, 等. 碳纤维增强摩阻材料的摩擦磨损特性研究. 摩擦学学报, 1999, 19(1): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX901.016.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  182
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 刊出日期:  2020-08-27

目录

    /

    返回文章
    返回