基于离散元法的颗粒高速压制模拟及动态力学分析

张璐栋 刘军 罗晓龙 张超 林立 周纯 王海陆

张璐栋, 刘军, 罗晓龙, 张超, 林立, 周纯, 王海陆. 基于离散元法的颗粒高速压制模拟及动态力学分析[J]. 粉末冶金技术, 2020, 38(5): 350-356, 362. doi: 10.19591/j.cnki.cn11-1974/tf.2019040013
引用本文: 张璐栋, 刘军, 罗晓龙, 张超, 林立, 周纯, 王海陆. 基于离散元法的颗粒高速压制模拟及动态力学分析[J]. 粉末冶金技术, 2020, 38(5): 350-356, 362. doi: 10.19591/j.cnki.cn11-1974/tf.2019040013
ZHANG Lu-dong, LIU Jun, LUO Xiao-long, ZHANG Chao, LIN Li, ZHOU Chun, WANG Hai-lu. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(5): 350-356, 362. doi: 10.19591/j.cnki.cn11-1974/tf.2019040013
Citation: ZHANG Lu-dong, LIU Jun, LUO Xiao-long, ZHANG Chao, LIN Li, ZHOU Chun, WANG Hai-lu. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(5): 350-356, 362. doi: 10.19591/j.cnki.cn11-1974/tf.2019040013

基于离散元法的颗粒高速压制模拟及动态力学分析

doi: 10.19591/j.cnki.cn11-1974/tf.2019040013
基金项目: 

国家自然科学基金资助项目 11372148

详细信息
    通讯作者:

    刘军, E-mail: liujun@nbu.edu.cn

  • 中图分类号: TF122

High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method

More Information
  • 摘要: 采用三维离散单元法对高速压制条件下铝粉颗粒的动态响应进行了数值模拟,并与实验结果进行对比分析。结果表明,数值模拟与实验所测得的结果基本相同;在高速压制过程中,粉体的扰动呈不规则的弧形分布;在压制初期,会出现整体受力不均匀的现象,随着压制的进行,不均匀现象得到改善,粉体表现出较强的自组织性;在单次加载过程中,颗粒会发生多次碰撞;在致密化阶段,上层的部分颗粒会先发生变形并重排,中下层颗粒以重排为主;进入变形阶段后,所有颗粒的受力情况基本相同。
  • 图  1  基于软球模型的颗粒接触示意图

    Figure  1.  Particles contact diagram based on the soft ball model

    图  2  软球模型对颗粒间接触力的简化处理:(a)法向力;(b)切向力

    Figure  2.  Simplified model of the soft ball model for the contact force between particles: (a) normal force; (b) tangential force

    图  3  离散元模型剖面图

    Figure  3.  Cross-section drawn of the 3D discrete element model

    图  4  透射波波形的模拟结果

    Figure  4.  Transmission waveform in the simulation

    图  5  透射波波形的实验结果[20]

    Figure  5.  Transmission waveform in the experiment[20]

    图  6  颗粒速度分布云图:(a)1500时步;(b)2920时步;(c)3240时步

    Figure  6.  Particle (ball) velocity mag: (a) 1500 time step; (b) 2920 time step; (c) 3240 time step

    图  7  所选颗粒位置示意图

    Figure  7.  Schematic diagram of the selected particle positions

    图  8  左侧颗粒波形图纵向对比:(a)第一列;(b)第二列;(c)第三列

    Figure  8.  Vertical comparison of particle waveforms on the left: (a) the first column; (b) the second column; (c) the third column

    图  9  颗粒波形图横向对比:(a)第一行;(b)第三行;(c)第五行

    Figure  9.  Horizontal comparison of particle waveforms: (a) the first row; (b) the second row; (c) the third row

    图  10  各层颗粒在Z轴方向受力的横向对比:(a)第一层;(b)第三层;(c)第五层

    Figure  10.  Horizontal comparison of particle contact force in the Z axis direction in each layer: (a) the first floor; (b) the second floor; (c) the third floor

    表  1  模拟中使用的主要参数

    Table  1.   Main parameters used in the simulation

    材料密度/ (kg·m-3) 颗粒直径/ mm 颗粒间摩擦系数 模壁摩擦系数 刚度系数 冲击速度/ (m·s-1)
    2700 0.15 0.3 0.1 108 10
    下载: 导出CSV
  • [1] Yan Z Q, Cai Y X, Chen F. High velocity compaction in powder forming and the promising applications. Powder Metall Technol, 2009, 27(6): 455 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200906012.htm

    闫志巧, 蔡一湘, 陈峰. 粉末冶金高速压制技术及其应用. 粉末冶金技术, 2009, 27(6): 455 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200906012.htm
    [2] Chi Y, Guo S J, Meng F, et al. High velocity compaction in powder metallurgy. Powder Metall Ind, 2005, 15(6): 41 doi: 10.3969/j.issn.1006-6543.2005.06.009

    迟悦, 果世驹, 孟飞, 等. 粉末冶金高速压制成形技术. 粉末冶金工业, 2005, 15(6): 41 doi: 10.3969/j.issn.1006-6543.2005.06.009
    [3] Chelluri B, Knoth E. Powder forming using dynamic magnetic compaction // 4th International Conference on High Speed Forming. Columbus, 2010: 26
    [4] Skoglund P. HVC punches PM to new mass production limits. MPR, 2002, 57(9): 26 http://www.researchgate.net/publication/285009917_HVC_punches_PM_to_new_mass_production_limits
    [5] Jin L, Zeng Y W, Li H, et al. Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles. Chin J Geotech Eng, 2015, 37(5): 829 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm

    金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟. 岩土工程学报, 2015, 37(5): 829 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm
    [6] Deng Y B, Yang Y C, Shi D D, et al. Refinement and application of variable particle-size methods in 3D discrete element modelling for large-scale problems. Chin J Geotech Eng, 2017, 39(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm

    邓益兵, 杨彦骋, 史旦达, 等. 三维离散元大尺度模拟中变粒径方法的优化及其应用. 岩土工程学报, 2017, 39(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm
    [7] Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902003.htm

    张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902003.htm
    [8] Jerier J F, Hathong B, Richefeu V, et al. Study of cold powder compaction by using the discrete element method. Powder Technol, 2011, 208(2): 537 doi: 10.1016/j.powtec.2010.08.056
    [9] Martin C L, Bouvard D. Study of the cold compaction of composite powders by the discrete element method. Acta Mater, 2003, 51(2): 373 doi: 10.1016/S1359-6454(02)00402-0
    [10] Martin C L, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method. J Mech Phys Solids, 2003, 51(4): 667 doi: 10.1016/S0022-5096(02)00101-1
    [11] Yang X, Guo S J. Discrete element simulation of powder compaction process // China Powder Metallurgy New Technology and Nanrong Metal Powder Metallurgy Conference. Guangzhou, 2008: 165

    杨霞, 果世驹. 粉末压制致密化过程的离散元模拟// 中国粉末冶金新技术及南荣金属粉末冶金会议文集. 广州, 2008: 165
    [12] Zheng Z S, Xu D, Lei X Y, et al. Numerical simulation and influential factors analysis of density distribution in high velocity compaction. J Mater Eng, 2012(7): 10 doi: 10.3969/j.issn.1001-4381.2012.07.003

    郑洲顺, 徐丹, 雷湘媛, 等. 粉末高速压制成形密度分布的数值模拟及影响因素分析. 材料工程, 2012(7): 10 doi: 10.3969/j.issn.1001-4381.2012.07.003
    [13] Zheng Z S, Wang S, Zheng S, et al. Numerical simulation of particle flow for high velocity compaction based on discrete element method. Rare Met Mater Eng, 2010, 39(12): 2132 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012014.htm

    郑洲顺, 王爽, 郑珊, 等. 基于离散单元法的粉末高速压制流动过程模拟. 稀有金属材料与工程, 2010, 39(12): 2132 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012014.htm
    [14] Wang S, Zheng Z S, Zhou W. The pressure wave analysis in high velocity compaction process. Acta Phys Sin, 2011, 60(12): 590 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201112085.htm

    王爽, 郑洲顺, 周文. 粉末高速压制成形过程中的应力波分析. 物理学报, 2011, 60(12): 590 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201112085.htm
    [15] Hu X P, Liu J, Ma B B. Research on the influential factors of contact force between metal particles based on the discrete element method. Mach Des Res, 2015, 31(5): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201505032.htm

    胡仙平, 刘军, 马斌斌. 基于DEM的金属颗粒间接触力的影响因素. 机械设计与研究, 2015, 31(5): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201505032.htm
    [16] Yi M J, Yin H Q, Qu X H, et al. Influence of force and stress wave on the quality of green compacts in high velocity compaction. Powder Metall Technol, 2009, 27(3): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200903011.htm

    易明军, 尹海清, 曲选辉, 等. 力与应力波对高速压制压坯质量的影响. 粉末冶金技术, 2009, 27(3): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200903011.htm
    [17] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47 doi: 10.1680/geot.1979.29.1.47
    [18] Sun Q C, Wang G Q. Review on granular flow dynamics and its discrete element method. Adv Mech, 2008, 38(1): 87 doi: 10.3321/j.issn:1000-0992.2008.01.006

    孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展, 2008, 38(1): 87 doi: 10.3321/j.issn:1000-0992.2008.01.006
    [19] Cheng Y F, Guo S J, Lai H Y. Computer simulation of random packing of spherical particles. J Univ Sic Technol Beijing, 1999, 21(4): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199904019.htm

    程远方, 果世驹, 赖和怡. 球形颗粒随机排列过程的计算机模拟. 北京科技大大学学报, 1999, 21(4): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199904019.htm
    [20] Luo X L, Liu J, Tian S J, et al. 3D Numerical simulation of aluminum powders under impact loading based on discrete element method. China Mech Eng, 2018, 29(20): 2515 doi: 10.3969/j.issn.1004-132X.2018.20.019

    罗晓龙, 刘军, 田始军, 等. 基于离散单元法的铝粉冲击加载过程三维数值模拟. 中国机械工程, 2018, 29(20): 2515 doi: 10.3969/j.issn.1004-132X.2018.20.019
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  211
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回