气体传感器用Au掺杂WO3基复合涂层的组织及气敏性研究

左明鑫 李月英

左明鑫, 李月英. 气体传感器用Au掺杂WO3基复合涂层的组织及气敏性研究[J]. 粉末冶金技术, 2020, 38(4): 283-288. doi: 10.19591/j.cnki.cn11-1974/tf.2019040015
引用本文: 左明鑫, 李月英. 气体传感器用Au掺杂WO3基复合涂层的组织及气敏性研究[J]. 粉末冶金技术, 2020, 38(4): 283-288. doi: 10.19591/j.cnki.cn11-1974/tf.2019040015
ZUO Ming-xin, LI Yue-ying. Study on microstructure and gas sensitivity of Au-doped WO3-based composite coating used in gas sensor[J]. Powder Metallurgy Technology, 2020, 38(4): 283-288. doi: 10.19591/j.cnki.cn11-1974/tf.2019040015
Citation: ZUO Ming-xin, LI Yue-ying. Study on microstructure and gas sensitivity of Au-doped WO3-based composite coating used in gas sensor[J]. Powder Metallurgy Technology, 2020, 38(4): 283-288. doi: 10.19591/j.cnki.cn11-1974/tf.2019040015

气体传感器用Au掺杂WO3基复合涂层的组织及气敏性研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019040015
基金项目: 

河南省科技攻关项目 182102110306

河南省产学研合作科技攻关项目 162107000011

河南省高等学校重点科研项目 16A470015

详细信息
    通讯作者:

    左明鑫, E-mail: hunjiusutu@126.com

  • 中图分类号: TG174.4

Study on microstructure and gas sensitivity of Au-doped WO3-based composite coating used in gas sensor

More Information
  • 摘要: 为了提高气体传感器的测试精度, 选择等离子喷涂工艺来制备Au掺杂WO3基(WO3/Au)复合涂层, 并对复合涂层的组织和气敏性展开分析。结果表明: 在WO3/Au复合涂层的X射线衍射谱图上, 只观察到WO3与Au对应的两种衍射峰, 没有出现其他物相的衍射峰; 相对于纯WO3涂层, WO3/Au复合涂层没有发生颗粒尺寸、结晶度与微观结构的显著改变; WO3/Au复合涂层的吸脱附曲线发生了分离的现象, 出现了脱附滞后的情况。当温度上升, 气体传感器用纯WO3涂层和WO3/Au复合涂层都出现了响应值先升高到峰值又逐渐降低的现象, 其中最大值出现在300℃处; 不同于纯WO3涂层, 气体传感器用WO3/Au复合涂层可以实现对NO2的快速响应, 并获得更短的恢复时间, 说明WO3/Au复合涂层具备更优的气敏性。
  • 图  1  原材料微观组织:(a)Au纳米颗粒;(b)WO3涂层

    Figure  1.  Microstructure of raw materials: (a)Au nanoparticles; (b)WO3 coatings

    图  2  不同喷涂距离下所制备WO3涂层的表面形貌:(a)150 mm; (b)175 mm; (c)200 mm

    Figure  2.  Surface morphology of the WO3 coatings prepared the under different spraying distances: (a)150 mm; (b)175 mm; (c)200 mm

    图  3  WO3/Au复合涂层X射线衍射图谱

    Figure  3.  XRD of the WO3/Au composite coating

    图  4  WO3/Au复合涂层的表面微观形貌:(a)低倍;(b)高倍

    Figure  4.  Surface morphology of the WO3/Au composite coatings: (a)low magnification; (b)high magnification

    图  5  WO3/Au复合涂层吸附‒脱附等温线及孔径分布曲线

    Figure  5.  Adsorption‒desorption isotherm and the pore size distribution of WO3/Au composite coatings

    图  6  纯WO3涂层和WO3/Au复合涂层的孔径分布曲线

    Figure  6.  Pore size distribution of the pure WO3 coatings and the WO3/Au composite coatings

    图  7  纯WO3涂层和WO3/Au复合涂层传感器对NO2的响应结果

    Figure  7.  Sensor response results to NO2 gas of the pure WO3coatings and the WO3/Au composite coatings

    图  8  纯WO3涂层和WO3/Au复合涂层的NO2气体响应电阻信号

    Figure  8.  NO2 gas response resistance of the pure WO3 coatings and the WO3/Au composite coatings used in the gas sensor

    表  1  试验用化学试剂

    Table  1.   Chemical reagents used in experiment

    试剂 制造商
    WC16, NH3H2O, Au 永华化学股份有限公司
    C2H5O, C3H5O, HO(C2H4O)nH 天津市恒兴化学试剂制造有限公司
    下载: 导出CSV

    表  2  等离子体喷涂参数

    Table  2.   Plasma spraying parameters

    编号 电流/A 电压/V 喷涂速度/(mL·min-1) 喷涂距/mm
    1 550 60 15 150
    2 550 60 15 175
    3 550 60 15 200
    下载: 导出CSV

    表  3  WO3/Au复合涂层能谱分析

    Table  3.   EDS analysis of WO3/Au composite coatings

    元素 质量分数/% 摩尔分数/%
    O 46.86 68.62
    Al 4.46 3.51
    W 41.56 23.61
    Au 7.12 4.26
    下载: 导出CSV
  • [1] Zhang Y, Lu W W. Optical electrode construction and photoelectric conversion performance of WO3/BiVO4 thin film. J Henan Univ Sci Technol Nat Sci, 2019, 40(4): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201904017.htm

    张源, 卢伟伟. WO3/BiVO4薄膜光电极构建及光电转化性能. 河南科技大学学报(自然科学版), 2019, 40(4): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201904017.htm
    [2] Wei F J, Zhang H J, Nguyen M, et al. Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sens Actuators B, 2015, 215(11): 15 http://smartsearch.nstl.gov.cn/paper_detail.html?id=756ae0c4c621a7caec1570bed3ab5b41
    [3] Sun P, Cao Y, Liu J, et al. Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas-sensing properties. Sens Actuators B, 2011, 156(2): 779 doi: 10.1016/j.snb.2011.02.038
    [4] Zhang J J, Zhang C, Li X J, et al. Effect of firing temperature on sensing performance of 8YSZ-WO3 ammonia sensor. J Technol, 2019, 19(1): 35 doi: 10.3969/j.issn.2096-3424.2019.01.004

    张晶晶, 张骋, 李学娇, 等. 煅烧温度对8YSZ-WO3氨传感器性能的影响. 应用技术学报, 2019, 19(1): 35 doi: 10.3969/j.issn.2096-3424.2019.01.004
    [5] Sheng S X, Wu C M, Feng J T, et al. Study on catalytic destruction of PCDD/Fs in sintering flue gas. China Resour Compr Util, 2019, 37(3): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201903005.htm

    盛守祥, 吴昌敏, 冯俊亭, 等. 催化降解烧结烟气中二噁英的研究. 中国资源综合利用, 2019, 37(3): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201903005.htm
    [6] Espid E, Taghipour F. Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens Actuators B, 2016, 241(22): 828
    [7] Baranov A, Spirjakin D, Akbari S, et al. Optimization of power consumption for gas sensor nodes: A survey. Sens Actuators A, 2015, 233(8): 279
    [8] Yang Z J, Yang N L, Pileni M P. Nano kirkendall effect related to nanocrystallinity of metal nanocrystals: Influence of the outward and inward atomic diffusion on the final nanoparticle structure. J Phys Chem C, 2015, 119(13): 22249 doi: 10.1021/acs.jpcc.5b06000
    [9] Niu F X, Chen Y, Zhang J H, et al. Preparation of tungsten trioxide/zinc oxide and its photocatalytic degradation of dye wastewater. Special Petrochem, 2019, 36(2): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSY201902007.htm

    牛凤兴, 陈钰, 张嘉豪, 等. WO3/ZnO的制备及其光催化降解染料废水研究. 精细石油化工, 2019, 36(2): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSY201902007.htm
    [10] Li T T, Shen Y B, Zhao S K, et al. Kinetics of sodium hydroxide-phosphate leaching scheelite concentrate. Trans Nonferrous Met Soc China, 2019, 29(3): 634 doi: 10.1016/S1003-6326(19)64973-3
    [11] Chen Z Q, Zhan Z L, Wang L L, et al. Study on surface gas sensor of WO3 by mixing La2O3 for VOCs. New Chem Mater, 2019, 47(3): 189 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201903043.htm

    陈志强, 詹自力, 王利利, 等. La2O2/WO3平面VOCs传感器的研究. 化工新型材料, 2019, 47(3): 189 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201903043.htm
    [12] Li Z, Wang X, Zhang J F, et al. Preparation of Z-scheme WO3(H2O)0.303/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chin J Catal, 2019, 40(3): 326 doi: 10.1016/S1872-2067(18)63165-1
    [13] Hu M, Qin Y, Zhao B S, et al. Study on fabrication and NO2 sensing properties of porous silicon modified with WO3 nanowires. Chin J Sens Actuators, 2019, 32(2): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201902002.htm

    胡明, 秦岳, 赵博硕, 等. 氧化钨纳米线修饰多孔硅结构的制备及NO2气敏性能研究. 传感技术学报, 2019, 32(2): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201902002.htm
    [14] Liu A Q, Zhu H B, Yuan J P, et al. Microstructure and performance of WC-12Co coating prepared by APS. Powder Metall Ind, 2015, 25(6): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201506019.htm

    刘安强, 祝弘滨, 袁建鹏, 等. 大气等离子喷涂WC-12Co涂层的组织结构与性能研究. 粉末冶金工业, 2015, 25(6): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201506019.htm
    [15] Ni X J, Bo X H, Zhao X B, et al. Microstructure and electromagnetic shielding performance of plasma-sprayed Fe-Co-based amorphous alloy coatings. Powder Metall Ind, 2018, 28(5): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201805014.htm

    倪晓俊, 薄希辉, 赵新彬, 等. 等离子喷涂Fe-Co基非晶合金涂层的结构与电磁屏蔽性能. 粉末冶金工业, 2018, 28(5): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201805014.htm
    [16] Zhang G G, Ni H Z, Zhang X C, et al. Electrochromic properties of WO3 film by spin-coating. Chin J Lumin, 2019, 40(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201902008.htm

    张观广, 倪浩智, 张啸尘, 等. 旋涂法制备WO3薄膜电致变色性能. 发光学报, 2019, 40(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201902008.htm
    [17] Diao J L, Li Z Y, Zheng T, et al. Research on low-melting point sealing glass in P2O5-SnF2-WO3 system. J Changchun Univ Sci Technol Nat Sci, 2019, 42(1): 128 https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201901027.htm

    刁金龙, 李正宇, 郑涛, 等. P2O5-SnF2-WO3系统低熔点封接玻璃的研究. 长春理工大学学报(自然科学版), 2019, 42(1): 128 https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201901027.htm
    [18] Hu W, Huang Z. Microstructure and photothermal effect of photothermal agent nanocrystalline WO(3-x) prepared by hydrothermal method. Mater Sci Eng Powder Metall, 2019, 24(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201901006.htm

    胡伟, 黄智. 水热法制备光热治疗剂纳米WO(3-x)的组织结构与光热效应. 粉末冶金材料科学与工程, 2019, 24(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201901006.htm
    [19] Zhao M M, Chen M Y, Zhang P J, et al. Catalytic effect of Ni components on supported V2O5-WO3/NiO-TiO2 denitrification catalyst. Powder Metall Ind, 2019, 29(1): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201901013.htm

    赵梦梦, 陈梦寅, 张鹏举, 等. 负载型V2O5-WO3/NiO-TiO2脱硝催化剂上Ni组分的催化作用. 粉末冶金工业, 2019, 29(1): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201901013.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  67
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 刊出日期:  2020-08-27

目录

    /

    返回文章
    返回