热等静压铁钴镍基高温合金的显微组织和力学性能

王新锋 贺卫卫 朱纪磊 向长淑

王新锋, 贺卫卫, 朱纪磊, 向长淑. 热等静压铁钴镍基高温合金的显微组织和力学性能[J]. 粉末冶金技术, 2020, 38(5): 371-376, 390. doi: 10.19591/j.cnki.cn11-1974/tf.2019060006
引用本文: 王新锋, 贺卫卫, 朱纪磊, 向长淑. 热等静压铁钴镍基高温合金的显微组织和力学性能[J]. 粉末冶金技术, 2020, 38(5): 371-376, 390. doi: 10.19591/j.cnki.cn11-1974/tf.2019060006
WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. doi: 10.19591/j.cnki.cn11-1974/tf.2019060006
Citation: WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. doi: 10.19591/j.cnki.cn11-1974/tf.2019060006

热等静压铁钴镍基高温合金的显微组织和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2019060006
详细信息
    通讯作者:

    王新锋, E-mail: 184082981@qq.com

  • 中图分类号: TG142.71

Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing

More Information
  • 摘要: 以气雾化(gas atomization,GA)粉末为原料,采用热等静压(hot isostatic pressing,HIP)致密化烧结工艺制备Fe18Ni23Co25Cr21Mo8WNbC2铁钴镍基高温合金,研究热等静压温度对致密化Fe18Ni23Co25Cr21Mo8WNbC2粉末高温合金金相组织、力学性能和断口形貌的影响。结果表明:热等静压技术制备的高温合金致密化程度很高,烧结体由(Fe,Ni)固溶体相和弥散分布的M6C碳化物强化相组成;热等静压温度为950~1050 ℃时,烧结体的密度、力学性能随着热等静压烧结温度的提高而提高;当热等静压温度达到1100 ℃时,致密化烧结体晶粒组织明显长大,其力学拉伸性能降低;致密化烧结体的室温拉伸断口以穿晶断裂为主,局部区域晶粒被拉伸开裂,650 ℃高温断口为穿晶断裂和沿晶断裂的混合形貌,基体相存在沿应力方向被拉长的韧窝。
  • 图  1  气雾化预合金粉末显微形貌:(a)放大500倍;(b)放大1000倍

    Figure  1.  Microstructures of the prealloyed powders by gas atomization: (a) ×500; (b) ×1000

    图  2  热等静压烧结体显微组织形貌:(a)放大1000倍;(b)放大5000倍

    Figure  2.  Microstructures of the HIPed sintering alloys: (a) ×1000; (b) ×5000

    图  3  预合金粉末和热等静压烧结体的X射线衍射图谱

    Figure  3.  XRD spectra of the prealloyed powders and the HIPed sintering alloys

    图  4  不同烧结温度下热等静压烧结体的金相组织:(a)900 ℃;(b)1000 ℃;(c)1050 ℃;(d)1100 ℃

    Figure  4.  Microstructures of the HIPed sintering alloys at different sintering temperatures: (a) 900 ℃; (b) 1000 ℃; (c) 1050 ℃; (d) 1100 ℃

    图  5  不同烧结温度下热等静压烧结体的密度

    Figure  5.  Density of the HIPed sintering alloys at different sintering temperatures

    图  6  经过不同热等静压烧结温度制备的试样在室温条件下的力学性能

    Figure  6.  Mechanical properties at room-temperature of the sample prepared by HIP at different sintering temperatures

    图  7  经过不同热等静压烧结温度制备的试样在650 ℃高温条件下的力学性能

    Figure  7.  Mechanical properties at 650 ℃ of the sample prepared by HIP at different sintering temperatures

    图  8  经过不同热等静压烧结温度制备的试样在室温和650 ℃高温拉伸断口形貌:(a)烧结温度1050 ℃,室温;(b)烧结温度1050 ℃,高温;(c)烧结温度1100 ℃,室温;(d)烧结温度1100 ℃,高温

    Figure  8.  Tension fracture morphology at room temperature and 650 ℃ of the samples prepared by HIP at different sintering temperatures: (a) 1050 ℃, room temperature; (b) 1050 ℃, high temperature; (c) 1100 ℃, room temperature; (d) 1100 ℃, high temperature

    表  1  铁镍基合金粉末化学成分(质量分数)

    Table  1.   Chemical composition of the Fe–Co–Ni based alloy powders  %

    Fe Ni Co Cr Mo W Nb C 其余
    14.18 20.36 23.41 17.80 11.82 4.32 3.25 0.45 4.41
    下载: 导出CSV
  • [1] Wang Q, Li S G, Lü H J, et al. Research on high quality titanium alloy powder production by atomization technology. Titanium Ind Prog, 2010, 27(5): 16 doi: 10.3969/j.issn.1009-9964.2010.05.004

    王琪, 李圣刚, 吕宏军, 等. 雾化法制备高品质钛合金粉末技术研究. 钛工业进展, 2010, 27(5): 16 doi: 10.3969/j.issn.1009-9964.2010.05.004
    [2] Yuan W X, Mei J, Samarov V, et al. Computer modeling and tooling design for near net shaped components using hot isostatic pressing. J Mater Process Technol, 2006, 182(1-3): 39 http://www.sciencedirect.com/science/article/pii/S0924013606006571
    [3] Hu W B, Jia C C, Hu B F, et al. Solidification microstructure of FGH96 superalloy powder prepared by argon gas atomization. Mater Sci Eng Powder Metall, 2011, 16(5): 671 doi: 10.3969/j.issn.1673-0224.2011.05.006

    胡文波, 贾成厂, 胡本芙, 等. 氩气雾化法制备FGH96高温合金粉末颗粒的凝固组织. 粉末冶金材料科学与工程, 2011, 16(5): 671 doi: 10.3969/j.issn.1673-0224.2011.05.006
    [4] Xu Y L. Chemical Composition Optimization, Microstructure and High Temperature Strengthening Mechanism of Nimonic 80A for Ultra-Supercritical Steam Turbine Blade [Dissertation]. Shanghai: Shanghai University, 2013

    徐裕来. 超超临界汽轮机叶片用高温合金Nimonic 80A成分优化、微结构及其高温强化机理研究[学位论文]. 上海: 上海大学, 2013
    [5] He S X, Wang J, Sun B D. Effect of HIP treatment on the microstructures and properties of K4169 superalloy. Foundry Technol, 2013, 34(12): 1646 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201312018.htm

    何树先, 王俊, 孙宝德. 热等静压处理对K4169高温合金显微形貌及性能的影响. 铸造技术, 2013, 34(12): 1646 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201312018.htm
    [6] Wu X Q, Jing H M, Zheng Y G, et al. The eutectic carbides and creep rupture strength of 25Cr20Ni heat-resistant steel tubes centrifugally cast with different solidification conditions. Mater Sci Eng A, 2000, 293(1-3): 252 http://www.sciencedirect.com/science/article/pii/S0921509300009849
    [7] Xiao X, Zhou L Z, Guo J T. Microstructural stability and creep behavior of nickel base superalloy U720Li. Acta Metall Sinica, 2001, 37(11): 1159 doi: 10.3321/j.issn:0412-1961.2001.11.006

    肖璇, 周兰章, 郭建亭. 镍基高温合金U720Li的组织稳定性及蠕变行为. 金属学报, 2001, 37(11): 1159 doi: 10.3321/j.issn:0412-1961.2001.11.006
    [8] Guo J T, Zhou L Z, Yuan C, et al. Microstructure and properties of several originally invented and unique superalloys in China. Chin J Nonferrous Met, 2011, 21(2): 237 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102002.htm

    郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的几种高温合金的组织和性能. 中国有色金属学报, 2011, 21(2): 237 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102002.htm
    [9] Sun C F, Dang X F, Li S W, et al. Sintering properties and microstructure of Fe–Ni–Co-based superalloy atomized powder. Rare Met Mater Eng, 2016, 45(12): 3115 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201612016.htm

    孙崇锋, 党晓凤, 李生文, 等. 铁镍钴基高温合金雾化粉末烧结特性及显微组织. 稀有金属材料与工程, 2016, 45(12): 3115 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201612016.htm
    [10] Xie F Z, Yang S W, Gao L, et al. Study on high temperature oxidation properties of aluminized coating on superalloy. Hot Working Technol, 2004(3): 11 doi: 10.3969/j.issn.1001-3814.2004.03.005

    谢辅洲, 杨世伟, 高丽, 等. 高温合金渗铝涂层抗高温氧化性能的研究. 热加工工艺, 2004(3): 11 doi: 10.3969/j.issn.1001-3814.2004.03.005
    [11] Furrer D U, Shankar R, White C. Optimizing the heat treatment of Ni-based superalloy turbine discs. JOM, 2003, 55: 32 doi: 10.1007/s11837-003-0157-0
    [12] Cui L J, Lin X Y, Zhu Q, et al. Research progress on heat treatment process of superalloys. Mater Rev, 2016, 30(13): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201613017.htm

    崔令江, 林熙原, 朱强, 等. 高温合金热处理工艺研究进展. 材料导报, 2016, 30(13): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201613017.htm
    [13] Huang Q Y, Li H K. High Temperature Alloy. Beijing: Metallurgical Industry Press, 2000

    黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000
    [14] Shao W D, Tong C S, Zhuang W. Composition design of a new cobalt base superalloy and its microstructure and properties. Mater Mechan Eng, 2005, 29(9): 41 doi: 10.3969/j.issn.1000-3738.2005.09.013

    邵卫东, 童潮山, 庄伟. 新型钴基高温合金成分设计及其组织与性能. 机械工程材料, 2005, 29(9): 41 doi: 10.3969/j.issn.1000-3738.2005.09.013
    [15] Lei Y Y, Yao Z K, Ning Y Q, et al. Improvement of forging heat treatment on inhomogeneous deformation of P/M superalloy. Rare Met Mater Eng, 2012, 41(9): 1689 doi: 10.3969/j.issn.1002-185X.2012.09.039

    雷应毅, 姚泽坤, 宁永权, 等. 热处理对粉末高温合金不均匀变形的改善作用. 稀有金属材料与工程, 2012, 41(9): 1689 doi: 10.3969/j.issn.1002-185X.2012.09.039
    [16] Zou J W, Wang W X. Development and application of P/M superalloy. J Aeron Mater, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051

    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  192
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回