水解沉淀-碳热还原氮化法制备碳氮化钛粉末

刘嘉威 古思勇 陈莹 张厚安

刘嘉威, 古思勇, 陈莹, 张厚安. 水解沉淀-碳热还原氮化法制备碳氮化钛粉末[J]. 粉末冶金技术, 2021, 39(1): 89-94. doi: 10.19591/j.cnki.cn11-1974/tf.2019060007
引用本文: 刘嘉威, 古思勇, 陈莹, 张厚安. 水解沉淀-碳热还原氮化法制备碳氮化钛粉末[J]. 粉末冶金技术, 2021, 39(1): 89-94. doi: 10.19591/j.cnki.cn11-1974/tf.2019060007
LIU Jia-wei, GU Si-yong, CHEN Ying, ZHANG Hou-an. Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method[J]. Powder Metallurgy Technology, 2021, 39(1): 89-94. doi: 10.19591/j.cnki.cn11-1974/tf.2019060007
Citation: LIU Jia-wei, GU Si-yong, CHEN Ying, ZHANG Hou-an. Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method[J]. Powder Metallurgy Technology, 2021, 39(1): 89-94. doi: 10.19591/j.cnki.cn11-1974/tf.2019060007

水解沉淀-碳热还原氮化法制备碳氮化钛粉末

doi: 10.19591/j.cnki.cn11-1974/tf.2019060007
基金项目: 

福建省自然科学基金资助项目 2019J01870

厦门市科技计划指导性项目 3502Z20179025

详细信息
    通讯作者:

    张厚安, E-mail: ha_zhang@163.com

  • 中图分类号: TF123

Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method

More Information
  • 摘要:

    以四氯化钛、炭黑为原料,利用水解沉淀-碳热还原氮化法制备了碳氮化钛粉末。利用差热分析、X射线衍射及扫描电镜等表征手段,研究了合成工艺对粉末物相、组成及形貌等的影响。结果发现:前驱体粉末经350 ℃煅烧2 h后,钛以TiO2的形式存在,TiO2与炭黑形成了混合均匀的团聚体;在碳热还原氮化反应时,钛氧化物向TiCxNyOz转变的温度范围为1200~ 1400 ℃;氮原子促进了钛氧化物向TiCxNyOz的转变,随着反应进一步进行,氧元素逐渐被碳、氮元素置换,形成TiCxNy固溶体;原料经1530 ℃还原4 h后,可合成氧质量分数0.3%、粒度~300 nm、化学式近似为TiC0.547N0.453的碳氮化钛粉末。

  • 图  1  前驱体粉末X射线衍射谱

    Figure  1.  XRD patterns of the precursors powders

    图  2  前驱体粉末显微形貌与元素分布:(a)形貌;(b)Ti元素分布;(c)C元素分布;(d)O元素分布

    Figure  2.  Microstructure and the element distribution of the precursors powders: (a) microstructure; (b) Ti; (c) C; (d) O

    图  3  前驱体粉末碳热还原氮化反应热重分析与示差扫描量热分析曲线

    Figure  3.  TG and DSC curves of the precursors powders by carbothemal reduction and nitridation method

    图  4  不同温度碳热还原产物的X射线衍射谱

    Figure  4.  XRD patterns of the carbothermal reduction products at different temperatures

    图  5  不同气氛下碳热还原产物的X射线衍射谱

    Figure  5.  XRD patterns of the carbothermal reduction products in different atmospheres

    图  6  不同还原时间下碳热还原产物的X射线衍射谱

    Figure  6.  XRD patterns of the carbothermal reduction products at different holding times

    图  7  不同还原时间碳热还原氮化产物显微形貌:(a)1 h;(b)2 h;(c)3 h;(d)4 h

    Figure  7.  Microstructure of the carbothermal reduction products at different holding times: (a) 1 h; (b) 2 h; (c) 3 h; (d) 4 h

    表  1  不同还原时间的碳热还原氮化产物晶面指数与晶胞参数

    Table  1.   Crystal indices and lattice constants of the carbothermal reduction products at different holding times

    晶面指数 还原时间/h
    1 2 3 4
    2θ/(°) 晶胞参数/nm 2θ/(°) 晶胞参数/nm 2θ/(°) 晶胞参数/nm 2θ/(°) 晶胞参数/nm
    (220) 61.187 0.42808 61.135 0.42841 61.123 0.42848 61.110 0.42857
    (311) 73.267 0.42815 73.203 0.42847 73.190 0.42854 73.163 0.42867
    (222) 77.077 0.42828 77.024 0.42853 77.022 0.42853 76.984 0.42871
    晶胞参数平均值/nm 0.42817 0.42847 0.42852 0.42865
    下载: 导出CSV
  • [1] Liu N, Chao S, Yang H D. Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C, N)-based cermets. Int J Refract Met Hard Mater, 2006, 24(6): 445 doi: 10.1016/j.ijrmhm.2005.09.001
    [2] Xu C H, Huang C Z, Ai X. Mechanical property and cutting performance of yttrium-reinforced Al2O3/Ti(C, N) composite ceramic tool material. J Mater Eng Perform, 2001, 10(1): 102 doi: 10.1361/105994901770345411
    [3] Kwon W T, Park J S, Kang S. Effect of group Ⅳ elements on the cutting characteristics of Ti(C, N) cermet tools and reliability analysis. J Mater Process Technol, 2005, 166(1): 9 doi: 10.1016/j.jmatprotec.2004.06.009
    [4] He X, Ye J W, Liu Y, et al. Studies on the carbothermal preparation of titanium carbonitride powders in the open system. J Funct Mater, 2009, 40(5): 771 doi: 10.3321/j.issn:1001-9731.2009.05.019

    何旭, 叶金文, 刘颖, 等. 开放体系下碳热还原法制备碳氮化钛粉末的研究. 功能材料, 2009, 40(5): 771 doi: 10.3321/j.issn:1001-9731.2009.05.019
    [5] Ke R X, Zhang L, Zhu J F, et al. Preparation and characterization of submicron Ti(C, N) powders produced by carbonthermal reduction-combination reaction. Cement Carb, 2015, 32(2): 71

    柯荣现, 张立, 朱骥飞, 等. 碳热还原-化合反应制备超细TiCN粉末工艺与特性表征研究. 硬质合金, 2015, 32(2): 71
    [6] Yu R H, Wang B Y, Jiang M X, et al. Preparation of titanium carbonitride powders by carbothermal reduction and nitridation method. Refractories, 2006, 40(1): 9 doi: 10.3969/j.issn.1001-1935.2006.01.003

    于仁红, 王宝玉, 蒋明学, 等. 碳热还原氮化法制备碳氮化钛粉末. 耐火材料, 2006, 40(1): 9 doi: 10.3969/j.issn.1001-1935.2006.01.003
    [7] Chen B Q, Ye J W, Liu Y, et al. Preparation of titanium carbonitride powder by carbothermal reduction method. Cement Carb, 2009, 26(2): 98 doi: 10.3969/j.issn.1003-7292.2009.02.007

    陈帮桥, 叶金文, 刘颖, 等. 碳热还原法制备碳氮化钛粉末. 硬质合金, 2009, 26(2): 98 doi: 10.3969/j.issn.1003-7292.2009.02.007
    [8] Yuan Q, Zheng Y, Yu H J. Synthesis of nanocrystalline Ti(C, N) powders by mechanical alloying and influence of alloying elements on the reaction. Int J Refract Met Hard Mater, 2009, 27(1): 121 doi: 10.1016/j.ijrmhm.2008.05.002
    [9] Chen X, Xu J F, Xiong W H, et al. Mechanochemical synthesis of Ti(C, N) nanopowder from titanium and melamine. Int J Refract Met Hard Mater, 2015, 50: 152 doi: 10.1016/j.ijrmhm.2015.01.003
    [10] Chicardi E, Gotor F J, Alcalá M D, et al. Effects of additives on the synthesis of TiCxN1-x by a solid-gas mechanically induced self-sustaining reaction. Ceram Int, 2018, 44(7): 7605 doi: 10.1016/j.ceramint.2018.01.179
    [11] Chen S F, Lu D F, Liu F D, et al. Synthesizing of powder of Ti(C0.12, N0.88) at high temperature. China Ceram, 2000, 36(5): 4

    陈森凤, 卢迪芬, 刘富德, 等. Ti(C0.12, N0.88)粉末的高温合成. 中国陶瓷, 2000, 36(5): 4
    [12] Zgalat-Lozynskyy O, Ragulya A. Densification kinetics and structural evolution during microwave and pressureless sintering of 15 nm titanium nitride powder. Nanoscale Res Lett, 2016, 11(1): 99 doi: 10.1186/s11671-016-1316-x
    [13] Lin L. Preparation of titanium nitride powders by combustion deoxidization synthesis (Ⅰ) — Theoretical analysis. Dev Appl Mater, 2000, 15(5): 1 doi: 10.3969/j.issn.1003-1545.2000.05.001

    林立. 燃烧还原化合法制备氮化钛粉末(Ⅰ)—理论分析. 材料开发与应用, 2000, 15(5): 1 doi: 10.3969/j.issn.1003-1545.2000.05.001
    [14] Xiang J H, Xiao H N. Synthesis of Ti(C, N) powder by inorganic sol-gol processing. J Inorg Mater, 1998, 13(5): 739 doi: 10.3321/j.issn:1000-324X.1998.05.018

    向军辉, 肖汉宁. 溶胶-凝胶工艺合成Ti(C, N)超细粉末. 无机材料学报, 1998, 13(5): 739 doi: 10.3321/j.issn:1000-324X.1998.05.018
    [15] Shen G Z, Tang K B, An C H, et al. A simple route to prepare nanocrystalline titanium carbonitride. Mater Res Bull, 2002, 37(6): 1207 doi: 10.1016/S0025-5408(02)00736-5
    [16] Chen R C. Study on the hydrolysis process of TiCl4. Hydrometall China, 1999(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ199903000.htm

    陈瑞澄. 四氯化钛水解过程的研究. 湿法冶金, 1999(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ199903000.htm
    [17] Berger L M, Gruner W. Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide. Int J Refract Met Hard Mater, 2002, 20(3): 235 doi: 10.1016/S0263-4368(02)00019-7
    [18] Fan M X, Peng J H, Chen H S, et al. A thermodynamics-based analysis of making titanium carbonitride through carbon thermal Reduction. J Kunming Univ Sci Technol Sic Technol, 2006, 31(5): 6 doi: 10.3969/j.issn.1007-855X.2006.05.002

    方民宪, 彭金辉, 陈厚生, 等. 碳热还原法制取碳氮化钛的热力学原理分析. 昆明理工大学学报(理工版), 2006, 31(5): 6 doi: 10.3969/j.issn.1007-855X.2006.05.002
    [19] Pastor H. Titanium-carbonitride-based hard alloys for cutting tools. Mater Sci Eng A, 1988, 105(88): 401
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  140
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回