不连续增强钛基复合材料的研究进展

冯俊 姜中涛 韩骐璘

冯俊, 姜中涛, 韩骐璘. 不连续增强钛基复合材料的研究进展[J]. 粉末冶金技术, 2020, 38(5): 391-398. doi: 10.19591/j.cnki.cn11-1974/tf.2019070001
引用本文: 冯俊, 姜中涛, 韩骐璘. 不连续增强钛基复合材料的研究进展[J]. 粉末冶金技术, 2020, 38(5): 391-398. doi: 10.19591/j.cnki.cn11-1974/tf.2019070001
FENG Jun, JIANG Zhong-tao, HAN Qi-lin. Research progress on discontinuous reinforced titanium matrix composites[J]. Powder Metallurgy Technology, 2020, 38(5): 391-398. doi: 10.19591/j.cnki.cn11-1974/tf.2019070001
Citation: FENG Jun, JIANG Zhong-tao, HAN Qi-lin. Research progress on discontinuous reinforced titanium matrix composites[J]. Powder Metallurgy Technology, 2020, 38(5): 391-398. doi: 10.19591/j.cnki.cn11-1974/tf.2019070001

不连续增强钛基复合材料的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019070001
基金项目: 

重庆市科委基础研究与前沿探索资助项目 cstc2018jcyjAX0472

重庆市教育委员会科学技术研究项目 KJQN201801306

详细信息
    通讯作者:

    姜中涛, E-mail: jiangtao6364@163.com

  • 中图分类号: TG146.4

Research progress on discontinuous reinforced titanium matrix composites

More Information
  • 摘要: 不连续增强相能有效改善钛基体的力学性能,提高钛基体的耐磨性、高温强度和抗氧化性,拓宽了钛合金的应用领域。陶瓷增强相具有硬度高、耐磨性好、热稳定、成本低廉等优点,成为不连续增强钛基复合材料的首选增强相,其中使用最为广泛的是TiC颗粒和TiB纤维。纳米碳材料因具有高弹性模量以及高抗拉强度等优异性能,可有效改善复合材料的强度、塑性,被用来制备高比强度的钛基复合材料,近年来成为最具潜力增强体材料。本文从增强体材料的选择出发,归纳总结了近十年不连续增强钛基复合材料的研究进展,综述了不同增强体材料对钛基体组织与力学性能的影响以及强化机理,提出进一步的研究方向,为提高钛基复合材料的整体性能和扩大其应用范围提供一定的依据。
  • 图  1  含有体积分数15%TiC的TiC/Ti6Al4V复合材料中TiC颗粒的形态[17]

    Figure  1.  Morphologies of TiC in TiC/Ti6Al4V composites with 15% volume fraction TiC[17]

    图  2  1300 ℃烧结的Ti–x%TiC(体积分数)复合材料的拉伸应力-应变曲线[5]

    Figure  2.  Tensile stress-strain curves of the Ti–x%TiC composites (volume fraction) sintered at 1300 ℃[5]

    图  3  含有体积分数3.5%TiBw的TiBw/TA15复合材料网络分布显微形貌[31]

    Figure  3.  Microstructure of TiB network distribution in the TiBw/TA15 composites with the TiBw volume fraction of 3.5%[31]

    图  4  含有体积分数5%(TiB + TiC)的(TiB + TiC)/Ti6Al4V烧结样的微观结构形貌:(a)烧结后3D网状结构;(b)典型微观结构[39]

    Figure  4.  Microstructure of the deep-etched as-sintered (TiB + TiC)/Ti6Al4V samples with the (TiB + TiC) volume fraction of 5%: (a) the 3D presentation of the as-sintered microstructure; (b) the typical microstructure [39]

    图  5  Ni–GNFs/Ti、GNFs/Ti复合材料和纯Ti的拉伸应力–应变曲线[40]

    Figure  5.  Tensile stress–strain curves of Ni–GNFs/Ti, GNFs/Ti composite, and pure Ti[40]

    图  6  碳纳米管壁以TiC方式结合示意图 [43]

    Figure  6.  Schematic illustration of the CNT walls bonded together through the TiC formation[43]

    表  1  陶瓷增强钛基复合材料的力学性能

    Table  1.   Mechanical properties of the ceramic reinforced TMC

    反应体系 增强相(体积分数) / % 制备方法 烧结温度/ ℃ 抗拉强度/ MPa 抗压强度/ MPa 屈服强度/ MPa 延伸率/ % 参考文献
    TiC–Ti64 15%TiC 激光直接沉积 1636 ± 23 1310 ± 22 14.1 ± 0.2 [17]
    C–Ti 0.4% TiC 放电等离子烧结 800 638.0 504.6 28.0 [26]
    Mo2C–Ti 5%TiC 真空烧结 1300 834.5 827.8 4.6 [20]
    VC–Ti 5%TiC 真空烧结 1300 596.7 590.9 5.3 [20]
    CH4–TiH2 15%TiC 气固反应 1300 715.0 615.0 12.1 [5]
    TiB2–TA15 5%TiBw 真空烧结 1100 773.0 16.0 [6]
    B4C–Ti 5%(TiB +TiC) 放电等离子烧结 1000 808 ± 9 658 ± 11 20.2 ± 1.3 [8]
    B4C–Ti 10.93%TiB+2.81%TiC 放电等离子烧结 1000 916 ± 44 1138 ± 16 2.6 ± 0.7 [36]
    下载: 导出CSV

    表  2  纳米碳材料增强钛基复合材料力学性能

    Table  2.   Mechanical properties of the nano-carbon reinforced TMCs

    反应体系 增强相(质量分数)/ % 制备方法 烧结温度/ K 抗拉强度/ MPa 屈服强度/ MPa 延伸率/ % 参考文献
    Ti–GNF 0.10 放电等离子烧结 876 887 817.0 10.0 [23]
    Ti–GNF 0.05 放电等离子烧结+ 热轧 823 722 651.0 19.0 [22]
    Ti–Ni–GNF 0.05 放电等离子烧结+ 热轧 823 793 748.0 18.0 [22]
    Ti–GO 0.60 放电等离子烧结 1273 535 446.0 11.0 [41]
    Ti–MWCNT 0.50 放电等离子烧结 1073 1056.0 ± 14.0 27.0 ± 0.4 [45]
    Ti–VGCF 0.40 放电等离子烧结 1073 696 542.2 27.3 [26]
    VGCF为气相生长碳纤维
    下载: 导出CSV
  • [1] Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm

    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术. 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm
    [2] Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012

    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012
    [3] Elkhateeb M G, Shin Y C. Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface. Mater Des, 2018, 155: 161 doi: 10.1016/j.matdes.2018.05.054
    [4] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm
    [5] Zhang C, Guo Z M, Yang F, et al. In situ formation of low interstitials Ti–TiC composites by gas-solid reaction. J Alloys Compd, 2018, 769: 37 doi: 10.1016/j.jallcom.2018.07.344
    [6] Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by pre-sintering and canned extrusion. J Alloys Compd, 2018, 738: 164 doi: 10.1016/j.jallcom.2017.12.132
    [7] Yi M, Zhang X Z, Liu G W, et al. Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti6Al4V composites from Ti–B4C–C and Ti–TiB2–TiC systems. Mater Charact, 2018, 140: 281 doi: 10.1016/j.matchar.2018.04.010
    [8] Huang L Q, Ma Q, Liu Z M, et al. In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd, 2018, 735: 2640 doi: 10.1016/j.jallcom.2017.11.238
    [9] Rielli V V, Amigó-Borrás V, Contieri R J. Microstructural evolution and mechanical properties of in-situ as-cast beta titanium matrix composites. J Alloys Compd, 2019, 778: 186 doi: 10.1016/j.jallcom.2018.11.093
    [10] Song Y, Chen Y, Liu W W, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater Des, 2016, 109: 256 doi: 10.1016/j.matdes.2016.07.077
    [11] Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater Sci Eng A, 2018, 725: 541 doi: 10.1016/j.msea.2018.04.056
    [12] Munir K S, Li Y C, Lin J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 doi: 10.1016/j.mtla.2018.08.015
    [13] Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 doi: 10.1016/j.msea.2017.04.026
    [14] Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review. Mater Des, 2019, 164: 107552 doi: 10.1016/j.matdes.2018.107552
    [15] Wang F, Mei J, Jiang H, et al. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Mater Sci Eng A, 2007, 445: 461 http://www.sciencedirect.com/science/article/pii/S0921509306020806
    [16] Liu S Y, Shin Y C. Simulation and experimental studies on microstructure evolution of resolidified dendritic TiCx in laser direct deposited Ti–TiC composite. Mater Des, 2018, 159: 212 http://www.sciencedirect.com/science/article/pii/S0264127518306816
    [17] Liu S Y, Shin Y C. The influences of melting degree of TiC reinforcements on microstructure and mechanical properties of laser direct deposited Ti6Al4V–TiC composites. Mater Des, 2017, 136: 185 doi: 10.1016/j.matdes.2017.09.063
    [18] Wang H W, Qi J Q, Zou C M, et al. High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites. Mater Sci Eng A, 2012, 545: 209 doi: 10.1016/j.msea.2012.03.037
    [19] Liu Y B, Liu Y, Tang H P, et al. Reactive sintering mechanism of Ti+Mo2C and Ti+VC powder compacts. J Mater Sci, 2011, 46(4): 902 doi: 10.1007/s10853-010-4833-5
    [20] Liu Y B, Liu Y, Tang H P, et al. Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites. J Alloys Compd, 2011, 509(8): 3592 doi: 10.1016/j.jallcom.2010.12.086
    [21] Liu Y B, Liu Y, Zhao Z W, et al. Effect of addition of metal carbide on the oxidation behaviors of titanium matrix composites. J Alloys Compd, 2014, 599: 188 doi: 10.1016/j.jallcom.2014.02.056
    [22] Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon, 2018, 137: 146 doi: 10.1016/j.carbon.2018.05.013
    [23] Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater Sci Eng A, 2018, 687: 164 http://www.sciencedirect.com/science/article/pii/S0921509317300989
    [24] Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 doi: 10.1016/j.carbon.2015.08.061
    [25] Sribalaji M, Mukherjee B, Bakshi S R, et al. In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Composites Part B, 2017, 123: 227 doi: 10.1016/j.compositesb.2017.05.035
    [26] Li S F, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Composites Part A, 2013, 48: 57 doi: 10.1016/j.compositesa.2012.12.005
    [27] Kim Y J, Chung H, Kang S J L. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction. Mater Sci Eng A, 2002, 333: 343 doi: 10.1016/S0921-5093(01)01858-5
    [28] You L, Yang F, Zhang C, et al. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction. Powder Metall Technol, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm

    尤力, 杨芳, 张策, 等. 气固反应原位生成TiC颗粒增强钛基复合材料. 粉末冶金技术, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm
    [29] Kim Y J, Chung H, Kang S J L. In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction. Composites Part A, 2001, 32(5): 731 doi: 10.1016/S1359-835X(99)00092-5
    [30] Cai C, Radoslaw C, Zhang J L, et al. In-situ preparation and formation of TiB/Ti6Al4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol, 2019, 342: 73 doi: 10.1016/j.powtec.2018.09.088
    [31] Huang L J, Yang F Y, Hu H T, et al. TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater Des, 2013, 51: 421 doi: 10.1016/j.matdes.2013.04.048
    [32] Huang L J, Wang S, Dong Y S, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites. Mater Sci Eng A, 2012, 545: 187 doi: 10.1016/j.msea.2012.03.019
    [33] Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93 doi: 10.1016/j.pmatsci.2015.01.002
    [34] Zhang R, Wang D J, Huang L J, et al. Deformation behaviors and microstructure evolution of TiBw/TA15 composite with novel network architecture. J Alloys Compd, 2017, 722: 970 doi: 10.1016/j.jallcom.2017.06.197
    [35] Tabrizi S G, Sajjadi S A, Babakhani A, et al. Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A, 2015, 624: 271 doi: 10.1016/j.msea.2014.11.036
    [36] Li S F, Kondoh K, Imai H, et al. Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des, 2016, 95: 127 doi: 10.1016/j.matdes.2016.01.092
    [37] Choi B J, Kim I L Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites. Wear, 2014, 318(1-2): 68 doi: 10.1016/j.wear.2014.05.013
    [38] Hu Z Y, Cheng X W, Li S L, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites. J Alloys Compd, 2017, 726: 240 doi: 10.1016/j.jallcom.2017.08.017
    [39] Huang L Q, Wang L H, Ma Q, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scripta Mater, 2017, 141: 133 doi: 10.1016/j.scriptamat.2017.08.007
    [40] Cao Z, Wang X D, Li J L, et al. Reinforcement with graphene nanoflakes in titanium matrix composites. J Alloys Compd, 2017, 696: 498 doi: 10.1016/j.jallcom.2016.11.302
    [41] Dong L L, Xiao B, Liu Y, et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides. Ceram Int, 2018, 44(15): 17835 doi: 10.1016/j.ceramint.2018.06.252
    [42] Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 doi: 10.1016/j.jallcom.2017.03.216
    [43] Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon, 2017, 115: 720 doi: 10.1016/j.carbon.2017.01.062
    [44] Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos Sci Technol, 2012, 72(11): 1291 doi: 10.1016/j.compscitech.2012.05.002
    [45] Sun Q, Yang Y Q, Luo X. Interfacial fracture toughness of fiber reinforced titanium matrix composites by push out test. Rare Met Mater Eng, 2017, 46(10): 2794 doi: 10.1016/S1875-5372(18)30009-2
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  130
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回