不同碳含量粉末烧结钢冷压流变致密化行为研究

吴辉 郭彪 李强 王俊桃 敖进清 宋欢 敖逸博

吴辉, 郭彪, 李强, 王俊桃, 敖进清, 宋欢, 敖逸博. 不同碳含量粉末烧结钢冷压流变致密化行为研究[J]. 粉末冶金技术, 2020, 38(5): 323-331. doi: 10.19591/j.cnki.cn11-1974/tf.2019070003
引用本文: 吴辉, 郭彪, 李强, 王俊桃, 敖进清, 宋欢, 敖逸博. 不同碳含量粉末烧结钢冷压流变致密化行为研究[J]. 粉末冶金技术, 2020, 38(5): 323-331. doi: 10.19591/j.cnki.cn11-1974/tf.2019070003
WU Hui, GUO Biao, LI Qiang, Wang Jun-tao, AO Jin-qing, SONG Huan, AO Yi-bo. Study on the flow and densification behaviors of powder sintered steel with different carbon contents during clod compression[J]. Powder Metallurgy Technology, 2020, 38(5): 323-331. doi: 10.19591/j.cnki.cn11-1974/tf.2019070003
Citation: WU Hui, GUO Biao, LI Qiang, Wang Jun-tao, AO Jin-qing, SONG Huan, AO Yi-bo. Study on the flow and densification behaviors of powder sintered steel with different carbon contents during clod compression[J]. Powder Metallurgy Technology, 2020, 38(5): 323-331. doi: 10.19591/j.cnki.cn11-1974/tf.2019070003

不同碳含量粉末烧结钢冷压流变致密化行为研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019070003
基金项目: 

国家自然科学基金资助项目 51504197

教育部春晖计划资助项目 Z2015097

四川省粉末冶金工程技术研究中心开放基金资助项目 SC-FMYJ2018-04

西华大学研究生创新基金资助项目 YCJJ2018072

详细信息
    通讯作者:

    郭彪, E-mail: biaoguo_mse@126.com

  • 中图分类号: TF124.8

Study on the flow and densification behaviors of powder sintered steel with different carbon contents during clod compression

More Information
  • 摘要: 在材料万能试验机上对碳含量(质量分数)为0%、0.3%、0.6%、0.9%、1.2%的粉末烧结钢进行冷压变形试验,利用Hollomon方程对粉末烧结钢流变应力数据进行非线性拟合,结合显微组织形貌分析烧结钢冷压流变致密化行为和孔隙、晶粒变形机制。结果表明:烧结钢冷压应变硬化行为符合Hollomon方程,随着碳含量的增加,极限断裂应变量逐渐减小;在相同应变下,随着碳含量的增加,烧结钢应变硬化率逐渐上升,致密化效果先增强后减弱,在碳质量分数为0.9%时最佳;随着应变增加,烧结钢孔隙闭合,晶粒由等轴状变为片状;烧结钢的流变致密化过程在低应变下以致密化和致密化硬化为主,在高应变下以变形和基体加工硬化为主。
  • 图  1  不同质量分数碳含量试样原始组织:(a)0%;(b)0.3%;(c)0.6%;(d)0.9%;(e)1.2%

    Figure  1.  Original microstructures of the specimens with the different carbon mass fractions: (a) 0%; (b) 0.3%; (c) 0.6%; (d) 0.9%; (e) 1.2%

    图  2  粉末烧结钢试样孔隙形貌和显微组织观察区示意图

    Figure  2.  Observation area diagram of the pore images and the microstructures in the powder sintered steel specimens

    图  3  粉末烧结钢在不同变形量下冷压真应力–真应变曲线

    Figure  3.  True stress-true strain curves of the powder sintered steels by cold compression at the different deformation

    图  4  粉末烧结钢应变硬化率–应变曲线

    Figure  4.  Strain hardening rate-strain curves of the powder sintered steels

    图  5  含碳质量分数为0.3%的冷压粉末烧结钢在不同变形量下的晶粒形貌: (a)15%;(b)25%;(c)35%;(d)极限应变

    Figure  5.  Grain morphology of the powder sintered steels by cold compression at the different deformation with the carbon mass fraction of 0.3%: (a) 15%; (b) 25%; (c) 35%; (d) ultimate strain

    图  6  不同碳含量烧结钢的轴向应变与周向应变的关系:(a)0%;(b)0.3%;(c)0.6%;(d)0.9%;(e)1.2%

    Figure  6.  Relationship between the axial strain and the circumferential strain of the powder sintered steels with the different carbon mass fractions: (a) 0%; (b) 0.3%; (c) 0.6%; (d) 0.9%; (e) 1.2%

    图  7  不同碳含量烧结钢的轴向应变与泊松比的关系

    Figure  7.  Relationship between the axial strain and the poisson's ratio of the powder sintered steels with the different carbon mass fractions

    图  8  不同碳含量烧结钢的变形量与相对密度的关系

    Figure  8.  Relationship between the deformation and relative density of the powder sintered steels with the different carbon mass fractions

    图  9  含碳质量分数为0.3%的冷压烧结钢不同变形量下的孔隙形貌:(a)0%;(b)15%;(c)25%;(d)35%

    Figure  9.  Pore images of the powder sintered steels by cold compression with the carbon mass fraction of 0.3% at the different deformation: (a) 0%; (b) 15%; (c) 25%; (d) 35%

    图  10  不同碳含量粉末烧结钢试样冷压变形量为15%时的孔隙形貌: (a)0%;(b)0.3%;(c)0.6%;(d)0.9%;(e)1.2%

    Figure  10.  Pore images of the powder sintered steels by cold compression with the different carbon mass fraction at the deformation of 15%: (a) 0%; (b) 0.3%; (c) 0.6%; (d) 0.9%; (e) 1.2%

    图  11  不同碳含量粉末烧结钢试样相对密度与轴向应力的关系

    Figure  11.  Relationship between the relative density and the axial stress of the powder sintered steels with the different carbon mass fraction

    表  1  Hollomon方程数值拟合结果

    Table  1.   Numerical fitting results of Hollomon equation

    碳质量分数/ % K n 相关系数,R2
    0.0 638.11 0.209 0.96391
    0.3 694.29 0.203 0.96552
    0.6 821.03 0.199 0.97736
    0.9 982.54 0.192 0.97821
    1.2 1080.35 0.189 0.97948
    下载: 导出CSV
  • [1] Chen M T, Shi J J, Chen G P. Development of powder metallurgy. Powder Metall Ind, 2017, 27(4): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704018.htm

    陈梦婷, 石建军, 陈国平. 粉末冶金发展状况. 粉末冶金工业, 2017, 27(4): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704018.htm
    [2] Whittaker D. PM structural parts move to higher density and performance. Powder Metall, 2007, 50(2): 99 doi: 10.1179/174329007X209114
    [3] Akash G, Kandavel T K, Sai Kishan I, et al. Experimental investigations on deformation, densification and mechanical properties of sintered Fe–C–Mn low alloy P/M steels under hot upsetting. Mater Today, 2018, 5(8): 16073 http://www.sciencedirect.com/science/article/pii/s2214785318310423
    [4] Gupta G K, Patel K K, Purohit R, et al. Effect of rolling on Ni–Ti–Fe shape memory alloys prepared through novel powder metallurgy route. Mater Today, 2017, 4(4): 5385 http://www.sciencedirect.com/science/article/pii/S2214785317307587
    [5] Issa H K, Taherizadeh A, Maleki A, et al. Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram Int, 2017, 43(17): 14582 doi: 10.1016/j.ceramint.2017.06.057
    [6] Kumar D R, Loganathan C, Narayanasamy R. Effect of glass in aluminum matrix on workability and strain hardening behavior of powder metallurgy composite. Mater Des, 2011, 32(4): 2413 doi: 10.1016/j.matdes.2010.12.008
    [7] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [8] Haynes R. Development of sintered low alloy steels. Powder Metall, 1989, 32(2): 140 doi: 10.1179/pom.1989.32.2.140
    [9] Ren X P, Wang E D, Huo W C. The yield criterion for powder compact. Powder Metall Technol, 1992, 10(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ199201002.htm

    任学平, 王尔德, 霍文灿. 粉末体的屈服准则. 粉末冶金技术, 1992, 10(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ199201002.htm
    [10] Xue Y, Zhang Z M, Zhang F X, et al. Extrusion forming of aluminum tungsten powder alloy and establishment of constitutive model. J Plast Eng, 2015, 22(2): 111 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201502020.htm

    薛勇, 张治民, 张福祥, 等. 铝钨粉末合金挤压成形与本构模型的建立. 塑性工程学报, 2015, 22(2): 111 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201502020.htm
    [11] Hu J Z. Numerical Simulation and Experimental Verification of Sheet Rolling Process of WCu20 Powders [Dissertation]. Harbin: Harbin Institute of Technology, 2017

    胡建召. W–Cu20粉末板材轧制过程数值模拟与实验验证[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [12] Venkata Kondaiah E, Kumaran S, Sundarrajan S. Study on densification behaviour of sintered AISI 4135 steel through hot upset forging. Mater Today, 2018, 5: 6543 http://www.sciencedirect.com/science/article/pii/S2214785317325774
    [13] Li Y Z. Study on the deformation and densification of sintered powder upsetting. Forg Stamp Technol, 2006, 31(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE200601011.htm

    李永志. 多孔烧结材料锻造镦粗成形致密的特性研究. 锻压技术, 2006, 31(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE200601011.htm
    [14] Liu X, Xiao Z Y, Guan H J, et al. Experimental study on the surface densification of Fe–2Cu–0.6C powder metallurgy material. Mater Manuf Processes, 2016, 31(12): 1621 doi: 10.1080/10426914.2015.1117619
    [15] Vishnuraj J T, Kandavel T K, Sai Kishan I, et al. A study on deformation and densification characteristics of P/M Fe–C–Mn alloy steels under cold upset. Mater Today, 2018, 5: 16740 http://www.sciencedirect.com/science/article/pii/S2214785318311453
    [16] Narayanasamy R, Pandey K S. Salient features in the cold upset-forming of sintered aluminium–3.5% alumina powder composite performs. J Mater Process Technol, 1997, 72(2): 201 doi: 10.1016/S0924-0136(97)00169-6
    [17] Narayanasamy R, Pandey K S. A study on the barrelling of sintered iron preforms during hot upset forging. J Mater Process Technol, 2000, 100(1): 87 http://www.sciencedirect.com/science/article/pii/S0924013699004574
    [18] Narayanasamy R, Senthilkumar V, Pandey K.S. Effect of titanium carbide particle addition on the densification behavior of sintered P/M high strength steel preforms during cold upset forming. Mater Sci Eng A, 2007, 456: 180 doi: 10.1016/j.msea.2006.11.118
    [19] Hollomon J H. The effect of heat treatment and carbon content on the work hardening characteristics of several steels. Trans ASM, 1994, 32: 123 http://www.researchgate.net/publication/284222180_The_effect_of_heat_treatment_and_carbon_content_on_the_work_hardening_characteristics_of_several_steel
    [20] Wang C Z. Material Properties. Beijing: Beijing University of Technology Press, 2001

    王从曾. 材料性能学. 北京: 北京工业大学出版社, 2001
    [21] Liu Z E. Fundamentals of Material Science. 4th Ed. Xi'an: Northwest Polytechnic University Press, 2013

    刘智恩. 材料科学基础. 4版. 西安: 西北工业大学出版社, 2013
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  174
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回