烧结温度对Cu-C-SnO2多孔材料组织与性能的影响

倪锋 孙高昂 李武会 傅丽华 李玲 孟云娜 凡亚丽

倪锋, 孙高昂, 李武会, 傅丽华, 李玲, 孟云娜, 凡亚丽. 烧结温度对Cu-C-SnO2多孔材料组织与性能的影响[J]. 粉末冶金技术, 2020, 38(6): 436-442. doi: 10.19591/j.cnki.cn11-1974/tf.2019070008
引用本文: 倪锋, 孙高昂, 李武会, 傅丽华, 李玲, 孟云娜, 凡亚丽. 烧结温度对Cu-C-SnO2多孔材料组织与性能的影响[J]. 粉末冶金技术, 2020, 38(6): 436-442. doi: 10.19591/j.cnki.cn11-1974/tf.2019070008
NI Feng, SUN Gao-ang, LI Wu-hui, FU Li-hua, LI Ling, MENG Yun-na, FAN Ya-li. Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials[J]. Powder Metallurgy Technology, 2020, 38(6): 436-442. doi: 10.19591/j.cnki.cn11-1974/tf.2019070008
Citation: NI Feng, SUN Gao-ang, LI Wu-hui, FU Li-hua, LI Ling, MENG Yun-na, FAN Ya-li. Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials[J]. Powder Metallurgy Technology, 2020, 38(6): 436-442. doi: 10.19591/j.cnki.cn11-1974/tf.2019070008

烧结温度对Cu-C-SnO2多孔材料组织与性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019070008
基金项目: 

河南省自然科学基金资助项目 0111040400

详细信息
    通讯作者:

    倪锋, E-mail: nifeng@haust.edu.cn

  • 中图分类号: TF124;TF125

Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials

More Information
  • 摘要: 采用SiO2-B2O3-Al2O3助焊剂辅助常压烧结法制备了铜-石墨-氧化锡(Cu-C-SnO2)复合多孔材料,对其显微组织和物理性能进行了测试,研究了烧结温度对Cu-C-SnO2多孔材料组织和性能的影响。结果表明,复合多孔材料主要由金属Cu、石墨和氧化物陶瓷相构成;随着烧结温度升高,SnO2逐渐减少,莫来石等矿化陶瓷相逐渐增多;当烧结温度从750℃升高到800℃时,Cu2O增多,当烧结温度高于800℃时,Cu2O随烧结温度的升高而减少;当烧结温度为950℃时,Cu相发生显著再结晶而晶粒粗大;材料的电阻率、渗油率和空气粘性渗透系数随烧结温度的变化呈现出相似的变化规律,都随烧结温度的增加而先减小后增大,在烧结温度850~900℃范围内达到最小值;烧结线收缩率和材料密度随烧结温度的变化呈现出相似的变化规律,都是随烧结温度的升高而增大,在烧结温度800℃附近存在一个临界值,在该临界值两侧,烧结线收缩率和材料密度随烧结温度变化的速率明显不同;在烧结温度800~850℃之间,材料里氏硬度存在一个突变点,在该突变点两侧,材料里氏硬度都随烧结温度的升高而升高。
  • 图  1  Cu–C–SnO2混合粉体烧结工艺:(a)烧结粉体封装;(b)烧结温度–时间曲线

    Figure  1.  Sintering technology of the Cu–C–SnO2 mixture powders: (a) the capsulation of the mixture powders; (b) the sintering temperature-time curve

    图  2  渗油率测试装置示意图

    Figure  2.  Illustration of the oil penetration testing device

    图  3  不同烧结温度下烧结体金相组织:(a)750℃;(b)800℃;(c)850℃;(d)900℃;(e)950℃

    Figure  3.  Metallographic structures of the sintered compacts at different sintering temperatures: (a) 750℃; (b) 800℃; (c) 850℃; (d)900℃; (e) 950℃

    图  4  烧结体X射线衍射分析:(a)衍射谱;(b)物相含量

    Figure  4.  X-ray diffraction analysis of the sintered compacts: (a) diffraction spectrum; (b) phase content

    图  5  烧结温度对烧结体收缩率的影响

    Figure  5.  Effect of sintering temperature on the sintering shrinkage of the sintered compacts

    图  6  烧结温度对烧结体密度的影响

    Figure  6.  Effect of sintering temperature on the density of the sintered compacts

    图  7  烧结温度对烧结体电阻率的影响

    Figure  7.  Effect of sintering temperature on the electrical resistivity of the sintered compacts

    图  8  烧结温度对烧结体渗油率的影响

    Figure  8.  Effect of sintering temperature on the oil penetration rate of the sintered compacts

    图  9  烧结温度对烧结体空气粘性渗透系数的影响

    Figure  9.  Effect of sintering temperature on the air permeability coefficient of the sintered compacts

    图  10  烧结温度对烧结体硬度的影响

    Figure  10.  Effect of sintering temperature on the hardness of the sintered compacts

    图  11  金属铜在大气中的微商热重曲线

    Figure  11.  Derivative thermogravimetry curve of copper in the atmosphere

  • [1] Fedorchenko I M. Tendencies in creating composite materials for equipping friction assemblies. Sov Powder Metall Met Ceram, 1992, 31(5): 408 doi: 10.1007/BF00796249
    [2] Becker A, Meffert D, Sauer B. Friction and wear investigations on single chain joints. Forsch Ingenieurwes, 2019, 83: 53 doi: 10.1007/s10010-019-00297-x
    [3] Lin X Y, Liu R T, Xiong X, et al. Effects of graphite granularity and pitch binder on properties of copper-graphite brush. Chin J Nonferrous Met, 2017, 27(7): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201707012.htm

    林雪杨, 刘如铁, 熊翔, 等. 石墨粒度及沥青黏结剂对铜-石墨电刷材料性能的影响. 中国有色金属学报, 2017, 27(7): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201707012.htm
    [4] Zhang Q Z, Li Q, Wang A X, et al. Recent development in copper-graphite self-lubrication contact materials. Mater Rev, 2005, 19(2): 43 doi: 10.3321/j.issn:1005-023X.2005.02.013

    张钦钊, 李强, 王爱香, 等. 铜-石墨自润滑触头材料的研究进展. 材料导报, 2005, 19(2): 43 doi: 10.3321/j.issn:1005-023X.2005.02.013
    [5] Zhu C C, Zhang P, Du Y H, et al. Copper-graphite pantograph slide plate with superexcellent performance. Railway Locomot Car, 2006, 26(3): 62 doi: 10.3969/j.issn.1008-7842.2006.03.022

    朱成才, 张鹏, 杜云慧, 等. 性能卓越的铜石墨受电弓滑板. 铁道机车车辆, 2006, 26(3): 62 doi: 10.3969/j.issn.1008-7842.2006.03.022
    [6] Sanderow H I, Pease L F. Evaluation of global PM oil-impregnated bearings. Powder Metall Technol, 2008, 26(1): 65 http://pmt.ustb.edu.cn/article/id/fmyjjs200801016

    Sanderow H I, Pease L F. 全球烧结金属含油轴承评定. 粉末冶金技术, 2008, 26(1): 65 http://pmt.ustb.edu.cn/article/id/fmyjjs200801016
    [7] Fu P, He G Q. Research progress of Cu-C current collector shoe materials. Met Funct Mater, 2010, 17(1): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201001020.htm

    付沛, 何国球. 铜石墨受电靴材料研究进展. 金属功能材料, 2010, 17(1): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201001020.htm
    [8] Zhang G X. Effects of copper-coated graphite content and particle size on properties of the Cu/copper-coated graphite composite. Powder Metall Technol, 2016, 34(3): 196 doi: 10.3969/j.issn.1001-3784.2016.03.007

    张国玺. 石墨含量及粒度对铜-镀铜石墨复合材料性能的影响. 粉末冶金技术, 2016, 34(3): 196 doi: 10.3969/j.issn.1001-3784.2016.03.007
    [9] Guo Y G. New progress of bearing materials. Hot Working Technol, 1996, 25(5): 44 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY605.019.htm

    郭应国. 轴承材料的新进展. 热加工工艺, 1996, 25(5): 44 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY605.019.htm
    [10] Liang C X, Pan Y. The effect of rare earth oxides on the properties of powder metallurgy iron-bronze based bearing materials. Lubr Eng, 2010, 35(1): 62 doi: 10.3969/j.issn.0254-0150.2010.01.017

    梁昌霞, 潘冶. 稀土氧化物对铁铜基粉末冶金轴承材料性能的影响. 润滑与密封, 2010, 35(1): 62 doi: 10.3969/j.issn.0254-0150.2010.01.017
    [11] Couillaud S, Lu Y F, Silvain J F. Thermal conductivity improvement of copper-carbon fiber composite by addition of an insulator: calcium hydroxide. J Mater Sci, 2014, 49(16): 5537 doi: 10.1007/s10853-014-8246-8
    [12] Zhou Y T, Yang X L, Huang C, et al. Synthesis and electrochemical properties of SnO2/graphite composite anode materials. Chin J Power Sources, 2014, 38(6): 1045 doi: 10.3969/j.issn.1002-087X.2014.06.017

    周永涛, 杨学林, 黄晨, 等. 二氧化锡/石墨复合负极材料制备与电化学性能. 电源技术, 2014, 38(6): 1045 doi: 10.3969/j.issn.1002-087X.2014.06.017
    [13] Bai X J, Hou M, Liu C, et al. 3D SnO2/graphene hydrogel anode material for lithium-ion battery. Acta Phys Chim Sin, 2017, 33(2): 377 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201702016.htm

    白雪君, 侯敏, 刘婵, 等. 锂离子电池用三维氧化锡/石墨烯水凝胶负极材料. 物理化学学报, 2017, 33(2): 377 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201702016.htm
    [14] Luo B M, Li F F, Jiang T T, et al. Synthesis of Pt/SnO2/graphene composite catalyst and its electro-catalytic properties to methanol oxidation. Guangdong Chem Ind, 2017, 44(11): 51 doi: 10.3969/j.issn.1007-1865.2017.11.023

    罗保民, 李芬芬, 蒋婷婷, 等. 铂/二氧化锡/石墨烯复合催化剂的制备及其催化甲醇氧化性能. 广东化工, 2017, 44(11): 51 doi: 10.3969/j.issn.1007-1865.2017.11.023
    [15] Ni F, Fu L H, Deng P, et al. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders. Powder Metall Technol, 2018, 36(5): 335 doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.003

    倪锋, 傅丽华, 邓攀, 等. SiO2-B2O3-Al2O3助焊剂对粉末烧结Cu-C-SnO2多孔材料组织与性能的影响. 粉末冶金技术. 2018, 36(5): 335 doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [16] Liang J Z, Yang Q Q. Predication of percolation threshold of conductive polymer composites. J S China Univ Technol Nat Sci, 2007, 35(8): 80 doi: 10.3321/j.issn:1000-565x.2007.08.016

    梁基照, 杨铨铨. 导电高分子复合材料逾渗阈值的预测. 华南理工大学学报(自然科学版), 2007, 35(8): 80 doi: 10.3321/j.issn:1000-565x.2007.08.016
    [17] Felege G N, Gurao N P, Upadhyaya A. Evolution of microtexture and microstructure during sintering of copper. Metall Mater Trans A, 2019, 50: 4193 doi: 10.1007/s11661-019-05317-7
    [18] Wei S K. Thermodynamics of Metallurgical Process. Beijing: Science Press, 2010

    魏寿昆. 冶金过程热力学. 北京: 科学出版社, 2010
  • 加载中
图(11)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  121
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 刊出日期:  2020-12-27

目录

    /

    返回文章
    返回