锂离子电池负极材料用纳米铁酸锌的制备及研究进展

马悦鹏 李慧 郝百川 严红燕 王乐

马悦鹏, 李慧, 郝百川, 严红燕, 王乐. 锂离子电池负极材料用纳米铁酸锌的制备及研究进展[J]. 粉末冶金技术, 2021, 39(4): 350-357. doi: 10.19591/j.cnki.cn11-1974/tf.2019080004
引用本文: 马悦鹏, 李慧, 郝百川, 严红燕, 王乐. 锂离子电池负极材料用纳米铁酸锌的制备及研究进展[J]. 粉末冶金技术, 2021, 39(4): 350-357. doi: 10.19591/j.cnki.cn11-1974/tf.2019080004
MA Yue-peng, LI Hui, HAO Bai-chuan, YAN Hong-yan, WANG Le. Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries[J]. Powder Metallurgy Technology, 2021, 39(4): 350-357. doi: 10.19591/j.cnki.cn11-1974/tf.2019080004
Citation: MA Yue-peng, LI Hui, HAO Bai-chuan, YAN Hong-yan, WANG Le. Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries[J]. Powder Metallurgy Technology, 2021, 39(4): 350-357. doi: 10.19591/j.cnki.cn11-1974/tf.2019080004

锂离子电池负极材料用纳米铁酸锌的制备及研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019080004
详细信息
    通讯作者:

    E-mail:lh@ncst.edu.cn

  • 中图分类号: TB34

Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries

More Information
  • 摘要: 铁酸锌(ZnFe2O4)因其优良的性能被用作锂离子电池新型负极材料,但ZnFe2O4导电性差,充放电过程中的体积效应严重,导致其循环稳定性低、容量衰减快、倍率性能差,限制了其的应用。本文介绍了几种制备纳米铁酸锌及铁酸锌复合材料的方法,通过扫描电子显微镜对纳米级铁酸锌的形貌结构进行了研究,总结了水热法、溶剂热法、静电纺丝技术、共沉淀法、固相反应法等工艺制备铁酸锌,并对制备产物的电化学性能进行了分析,得出了限制其发展的真正原因。
  • 图  1  典型ZnFe2O4八面体显微形貌(a),单个ZnFe2O4晶粒显微形貌(b)和{111}面封闭ZnFe2O4八面体结构模型(c)[12]

    Figure  1.  Representative scanning electron microscope (SEM) image of ZnFe2O4 octahedrons (a), SEM image of the individual ZnFe2O4 particle (b), and the structure model of ZnFe2O4 octahedrons enclosed by {111} face (c)[12]

    图  2  ZnFe2O4电极材料电化学性能:(a)选定循环的放电/充电曲线;(b)放电/充电容量和库仑效率与循环次数的关系曲线[12]

    Figure  2.  Electrochemical performance of the ZnFe2O4 electrode materials: (a) the discharge/charge profiles for the selected cycles; (b) the discharge/charge capacity and coulombic efficiency as a function of cycle number[12]

    图  3  ZnFe2O4扫描电子显微形貌(a)及透射电子显微形貌(b)[4]

    Figure  3.  SEM (a) and TEM (b) images of ZnFe2O4[4]

    图  4  ZnFe2O4电极的恒流充放电曲线(a)和循环性能(b)[4]

    Figure  4.  Charge-discharge curve (a) at the constant current and the cycling performance (b) of the ZnFe2O4 electrode[4]

    图  5  ZnFe2O4纳米纤维透射电镜形貌[21]

    Figure  5.  TEM image of ZnFe2O4 nanofibers[21]

    图  6  ZnFe2O4纳米纤维的充放电曲线(a)和循环能图(b)[21]

    Figure  6.  Galvanostatic charge-diacharge curve (a) and the cyclic performance curve (b) of ZnFe2O4 nanofibers[21]

    图  8  ZnFe2O4循环性能(a)和速率性能(b)[25]

    Figure  8.  Cycling performance (a) and rate performance (b) of ZnFe2O4[25]

    图  9  ZnFe2O4/C复合材料高分辨显微形貌[27]

    Figure  9.  High resolution TEM images of the ZnFe2O4/C composites[27]

    图  10  ZnFe2O4/C复合材料恒定电流循环的脱锂能力和库伦效率(a)及可逆容量曲线(截止电压:0.01 V和3.00 V)(b)[27]

    Figure  10.  De-lithiation capacity and coulombic efficiency at the constant current cycling (a) and the reversible capacity curves of the ZnFe2O4/C composite materials at the different specific currents (cut-off voltages: 0.01 V and 3.00 V) (b)[27]

    图  11  固相法制得的ZnFe2O4显微形貌[29]

    Figure  11.  SEM image of ZnFe2O4 prepared by solid-state method[29]

    图  12  固相法制得的ZnFe2O4循环稳定性(电压3.00~0.05 V、电流密度60 mA·g−1[29]

    Figure  12.  Cyclic stability of ZnFe2O4 prepared by solid phase method at the voltage range of 3.00~0.05 V and the current density of 60 mA·g−1[29]

  • [1] Yao J H, Zhang Y F, Qiu X P, et al. Research progress in improving electrochemical performance of zinc ferrite as anode material for lithium ion batteries. Mod Chem Ind, 2016, 36(12): 33

    姚金环, 张玉芳, 丘雪萍, 等. 改进锂离子电池负极材料ZnFe2O4电化学性能的研究进展. 现代化工, 2016, 36(12): 33
    [2] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries. Energy Environ Sci, 2009, 2(6): 638 doi: 10.1039/b904116h
    [3] Yan J, Xia B J, Su Y C, et al. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim Acta, 2008, 53(24): 7069 doi: 10.1016/j.electacta.2008.05.032
    [4] Liao L X, Wang M, Fang T, et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. J Inorg Mater, 2016, 31(1): 34 doi: 10.15541/jim20150272

    廖丽霞, 王明, 方涛, 等. ZnFe2O4锂离子电池负极材料的制备及电化学性能研究. 无机材料学报, 2016, 31(1): 34 doi: 10.15541/jim20150272
    [5] Yang T B. Synthesis and Modification of ZnM2O4 (M=Mn, Fe) as Anode Materials for Lithium-Ion Batteries [Dissertation]. Changchun: Jilin University, 2017

    杨天博. 锂离子电池负极材料ZnM2O4(M= Mn, Fe)的合成、改性与电化学性能研究[学位论文]. 长春: 吉林大学, 2017
    [6] Poizot P, Baudrin E, Laruelle S, et al. Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O. Solid State Ionics, 2000, 138(1-2): 31 doi: 10.1016/S0167-2738(00)00784-0
    [7] Cao H. Synthesis, Characterization and Li-Storage Performance of Carbon-Coated ZnFe2O4-Based Anode Materials for Li-Ion Batteries [Dissertation]. Ma’ anshan: Anhui University of Technology, 2017

    曹慧. 碳包覆ZnFe2O4 基锂离子电池负极材料的制备、表征及其储锂性能[学位论文]. 马鞍山: 安徽工业大学, 2017
    [8] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 doi: 10.1002/adma.201000717
    [9] Wang J C, Chen Y H, Chen Q Y. Latest development of nanometer particles in chemical fibers. China Dyeing Finish, 2004, 30(7): 45 doi: 10.3321/j.issn:1000-4017.2004.07.015

    王锦成, 陈月辉, 陈琼云. 纳米材料在化学纤维中的应用现状. 印染, 2004, 30(7): 45 doi: 10.3321/j.issn:1000-4017.2004.07.015
    [10] Han L J. Synthesis of Nano-Zinc Ferrite via Hydrothermal Synthesis Route and Study on their Photocatalytic Properties [Dissertation]. Guangzhou: South China University of Technology, 2012

    韩黎君. 水热法合成纳米铁酸锌及其光催化性能研究[学位论文]. 广州: 华南理工大学, 2012
    [11] Yan X, Hu X L, Yue H, et al. Hydrothermal synthesis of nano zinc ferrite. Chemistry, 2002, 65(9): 623 doi: 10.3969/j.issn.0441-3776.2002.09.013

    阎鑫, 胡小玲, 岳红, 等. 纳米铁酸锌的水热合成. 化学通报, 2002, 65(9): 623 doi: 10.3969/j.issn.0441-3776.2002.09.013
    [12] Xing Z, Ju Z C, Yang J, et al. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode materialfor Li-ion batteries. Nano Res, 2012, 5(7): 477 doi: 10.1007/s12274-012-0233-2
    [13] Xie J, Song W T, Cao G S, et al. One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Adv, 2014, 4(15): 7703 doi: 10.1039/c3ra46904b
    [14] Xu J, Gu S, Fan L, et al. Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries. Electrochim Acta, 2016, 196: 125 doi: 10.1016/j.electacta.2016.01.228
    [15] Guo X, Lu X, Fang X, et al. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun, 2010, 12(6): 847 doi: 10.1016/j.elecom.2010.04.003
    [16] Sun X. Preparation of Three-Dimensional TiO2 Microspheres by Solvothermal Method and the Photocatalytic Activities [Dissertation]. Jinan: Shandong University, 2018

    孙翔. 溶剂热法制备三维分级TiO2纳米棒微球及其光催化性能研究[学位论文]. 济南: 山东大学, 2018
    [17] Gao J, Mu X, Li J J, et al. Preparation and characterization of porous spherical Li4Ti5O12/C anode material for lithium ion batteries. J Inorg Mater, 2012, 27(3): 253
    [18] Han Z Z, Jia H M, Yang S H, et al. Synthesis and supercapacitor properties of ZnFe2O4 nanoparticles-graphene composites. China Powder Sci Technol, 2018, 24(1): 86

    韩臻臻, 贾慧敏, 杨树华, 等. ZnFe2O4纳米粒子-石墨烯复合材料制备和超级电容器性能. 中国粉体技术, 2018, 24(1): 86
    [19] Xia H, Qian Y, Fu Y, et al. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci, 2013, 17: 67 doi: 10.1016/j.solidstatesciences.2012.12.001
    [20] Wang Y Z. A brief history of electrospinning technology development and application. China Synth Fiber Ind, 2018, 41(4): 52 doi: 10.3969/j.issn.1001-0041.2018.04.013

    王艳芝. 静电纺丝技术发展简史及应用. 合成纤维工业, 2018, 41(4): 52 doi: 10.3969/j.issn.1001-0041.2018.04.013
    [21] Fei Y Q. Preparation and Electrochemical Properties of ZnFe2O4 Composite Nanofibers [Dissertation]. Wuxi: Jiangnan University, 2017

    费雅倩. 铁酸锌复合纳米纤维材料的制备和电化学性能研究[学位论文]. 无锡: 江南大学, 2017
    [22] Zhang M, Sun Z H, Zhang T F, et al. Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon, 2016, 102: 32 doi: 10.1016/j.carbon.2016.02.032
    [23] Xiao Y L, Zai J T, Tao L Q, et al. MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phy Chem Chem Phy, 2013, 15(11): 3939 doi: 10.1039/c3cp50220a
    [24] Teh P F, Sharma Y, Pramana S S, et al. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem, 2011, 21(38): 14999 doi: 10.1039/c1jm12088c
    [25] Zhong X B, Yang Z Z, Wang H Y, et al. A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources, 2016, 306: 718 doi: 10.1016/j.jpowsour.2015.12.102
    [26] Ye L, Duan Y Q, Yuan Z H. Preparation of nanosized zinc ferrite by co-precipitation and crystallization behavior. J Tianjin Univ Technol, 2007, 23(6): 36 doi: 10.3969/j.issn.1673-095X.2007.06.012

    叶琳, 段月琴, 袁志好. 共沉淀法制备的铁酸锌纳米材料的晶化与晶粒生长行为. 天津理工大学学报, 2007, 23(6): 36 doi: 10.3969/j.issn.1673-095X.2007.06.012
    [27] Jia H, Kloepsch R, He X, et al. Nanostructured ZnFe2O4 as anode material for lithium ion batteries: Ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution. Acta Chim Slov, 2016, 63(3): 470
    [28] Ding Y, Yang Y, Shao H. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta, 2011, 56(25): 9433 doi: 10.1016/j.electacta.2011.08.031
    [29] Bai Y, Ding L H, Zhang W F. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Phys Sin, 2011, 60(5): 778

    白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 778
  • 加载中
图(12)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  320
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-19
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回