纳米氧化铁的制备及形貌分析

孙天昊 郝素菊 蒋武锋 张玉柱

孙天昊, 郝素菊, 蒋武锋, 张玉柱. 纳米氧化铁的制备及形貌分析[J]. 粉末冶金技术, 2021, 39(1): 76-80. doi: 10.19591/j.cnki.cn11-1974/tf.2019080008
引用本文: 孙天昊, 郝素菊, 蒋武锋, 张玉柱. 纳米氧化铁的制备及形貌分析[J]. 粉末冶金技术, 2021, 39(1): 76-80. doi: 10.19591/j.cnki.cn11-1974/tf.2019080008
SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. doi: 10.19591/j.cnki.cn11-1974/tf.2019080008
Citation: SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. doi: 10.19591/j.cnki.cn11-1974/tf.2019080008

纳米氧化铁的制备及形貌分析

doi: 10.19591/j.cnki.cn11-1974/tf.2019080008
基金项目: 国家自然科学基金资助项目(51274084);河北省自然科学基金资助项目(E2018209323,E2017209231)
详细信息
    通讯作者:

    E-mail:sujuh@sina.com

  • 中图分类号: TF03

Preparation and morphology analysis of nano-sized iron oxide

More Information
  • 摘要: 以九水硝酸铁(Fe(NO33·9H2O)为铁源,无水乙醇和乙二胺为表面活性剂,采用水热法制备了纳米氧化铁(Fe2O3纳米棒),通过扫描电子显微镜观察分析了Fe2O3纳米棒形貌,研究了(Fe(NO33·9H2O)质量分数及反应温度对Fe2O3纳米棒颗粒尺寸的影响。结果表明,纳米棒的长度和宽度分别约为500~600 nm和50~60 nm;在160~220 ℃范围内,温度对Fe2O3纳米棒形貌的影响不显著;在一定范围内提高铁源质量分数可使纳米棒颗粒尺寸变小。Fe2O3纳米棒的形成机理为:铁源在强碱性的溶液中反应生成棕黄色絮状沉淀α-FeOOH,该沉淀在高温高压的环境中,在乙二胺作用下脱水形成Fe2O3纳米棒。
  • 图  1  纳米氧化铁显微形貌:(a)颗粒形状;(b)断面形貌

    Figure  1.  SEM images of the nano-rod iron oxide: (a) particle images; (b) fracture images

    图  2  采用不同质量Fe(NO3)3·9H2O制备出的纳米氧化铁样品显微形貌:(a)2 g;(b)3 g;(c)4 g;(d)5 g

    Figure  2.  SEM images of the nano-rod iron oxide samples with different Fe(NO3)3·9H2O addition: (a) 2 g; (b) 3 g; (c) 4 g; (d) 5 g

    图  3  在不同反应温度下制备的纳米氧化铁样品显微形貌:(a)160 ℃;(b)180 ℃;(c)200 ℃;(d)220 ℃

    Figure  3.  SEM images of the nano-rod iron oxide samples at different temperatures: (a) 160 ℃; (b) 180 ℃; (c) 200 ℃; (d) 220 ℃

    图  4  纳米氧化铁样品的X射线衍射谱

    Figure  4.  XRD patterns of the nano-rod iron oxide samples

    图  5  不同温度下制取纳米氧化铁样品的X射线衍射图谱

    Figure  5.  XRD patterns of the nano-rod iron oxide samples prepared at different temperatures

    图  6  不添加乙二胺所制备纳米氧化铁样品显微形貌

    Figure  6.  SEM images of the nano-sized iron oxide samples without ethylenediamine

  • [1] Zhang L S, Li H, Zhang H X, et al. Research progress on the application and preparation of nano-Fe3O4. Powder Metall Technol, 2019, 37(3): 233

    张立生, 李慧, 张汉鑫, 等. 纳米Fe3O4应用及制备工艺研究进展. 粉末冶金技术, 2019, 37(3): 233
    [2] Wang X P, Yu Y, Hu X F, et al. Preparation of oxide films by liquid phase deposition. J Funct Mater, 2000, 31(4): 341 doi: 10.3321/j.issn:1001-9731.2000.04.002

    王晓萍, 于云, 胡行方, 等. 液相沉积法制备氧化物薄膜. 功能材料, 2000, 31(4): 341 doi: 10.3321/j.issn:1001-9731.2000.04.002
    [3] Li F, Liu L, An Y, et al. Hydrothermal liquefaction of three kinds of starches into reducing sugars. J Cleaner Prod, 2016, 112(1): 1049
    [4] Qi L Y, Hao S, Li Y J. Synthesis of various morphological Ca0.75Er0.25MnO3 powders by hydrothermal method and their electrical properties. Res Chem Intermed, 2017, 43(11): 6589 doi: 10.1007/s11164-017-3006-4
    [5] Shi E W, Xia C T, Wang B G, et, al. Application and development of hydrothermal method. J Inorg Mater, 1996, 11(2): 193 doi: 10.3321/j.issn:1000-324X.1996.02.001

    施尔畏, 夏长泰, 王步国, 等. 水热法的应用与发展. 无机材料学报, 1996, 11(2): 193 doi: 10.3321/j.issn:1000-324X.1996.02.001
    [6] Zheng X F. Research progress in preparation of nano-oxides by hydrothermal method. Inorg Chem Ind, 2009, 41(8): 9 doi: 10.3969/j.issn.1006-4990.2009.08.003

    郑兴芳. 水热法制备纳米氧化物的研究进展. 无机盐工业, 2009, 41(8): 9 doi: 10.3969/j.issn.1006-4990.2009.08.003
    [7] Yu W G, Zhang T L, Zhang J G, et al. The preparation methods of magnetite nanoparticles and their morphology. Prog Chem, 2007, 19(6): 884 doi: 10.3321/j.issn:1005-281X.2007.06.006

    于文广, 张同来, 张建国, 等. 纳米四氧化三铁(Fe3O4)的制备和形貌. 化学进展, 2007, 19(6): 884 doi: 10.3321/j.issn:1005-281X.2007.06.006
    [8] Li C K, Qi H Z, Yan B. Chemical preparation and application of magnetic Fe3O4 nano-particles. Shanghai Met, 2009, 31(4): 54 doi: 10.3969/j.issn.1001-7208.2009.04.013

    李成魁, 祁红璋, 严彪. 磁性纳米四氧化三铁颗粒的化学制备及应用进展. 上海金属, 2009, 31(4): 54 doi: 10.3969/j.issn.1001-7208.2009.04.013
    [9] Xu Z C, Wu L L, Chen T. Research progress of direct-spinning based fabrication of carbon nanotube fibers. China Text Leader, 2019, 37(6): 67 doi: 10.3969/j.issn.1003-3025.2019.06.013

    徐子超, 吴丽莉, 陈廷. 直接气相沉积法制备碳纳米管纤维的研究进展. 纺织导报, 2019, 37(6): 67 doi: 10.3969/j.issn.1003-3025.2019.06.013
    [10] Zhuang X D, Li R X, Yu X H, et al. Preparation of lithium titanate electrode materials by solid phase method. Mater Rep, 2019, 33(16): 2654 doi: 10.11896/cldb.18060159

    庄晓东, 李荣兴, 俞小花, 等. 固相法制备钛酸锂电极材料. 材料导报, 2019, 33(16): 2654 doi: 10.11896/cldb.18060159
    [11] Song X M. Supercritical Method Preparation for Lithium Iron Phosphate Nanometer Material and Its Carbon-Coating Research[Dissertation]. Shanghai: Shanghai Jiao Tong University, 2012

    宋续明. 超临界法连续制备磷酸铁锂纳米正极材料及其碳包覆研究[学位论文]. 上海: 上海交通大学, 2012
    [12] Shao P H. Optimizing Synthesis of Iron Oxide Nano-Materials for Application in Photo-Fenton Degradation of Bisphenol S under Visible Light Irradiation[Dissertation]. Harbin: Harbin Institute of Technology, 2017

    邵鹏辉. 纳米氧化铁的优化制备及其可见光芬顿降解水中的双酚S[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [13] Jiao J G. The Controllable Synthesis and Study on Magnetic Properties of Irod Oxide-Based Nanorods and Nanoparticles[Dissertation]. Harbin: Harbin Institute of Technology, 2017

    焦建国. 氧化铁基纳米棒(颗粒)的可控合成与磁性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [14] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc, 2003, 125(15): 4430 doi: 10.1021/ja0299452
    [15] Du Y W, Li Z Y, Lu H X, et al. Study on the formation conditions of FeOOH. Acta Phys Sin, 1979, 28(5): 705 doi: 10.3321/j.issn:1000-3290.1979.05.012

    都有为, 李正宇, 陆怀先, 等. FeOOH生成条件的研究. 物理学报, 1979, 28(5): 705 doi: 10.3321/j.issn:1000-3290.1979.05.012
  • 加载中
图(6)
计量
  • 文章访问数:  896
  • HTML全文浏览量:  2198
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回