纳米金刚石分散方法研究进展

赵轩 廖燕玲 黄耀杰 汤宏群 伍尚华 张凤林

赵轩, 廖燕玲, 黄耀杰, 汤宏群, 伍尚华, 张凤林. 纳米金刚石分散方法研究进展[J]. 粉末冶金技术, 2021, 39(1): 15-23. doi: 10.19591/j.cnki.cn11-1974/tf.2019080009
引用本文: 赵轩, 廖燕玲, 黄耀杰, 汤宏群, 伍尚华, 张凤林. 纳米金刚石分散方法研究进展[J]. 粉末冶金技术, 2021, 39(1): 15-23. doi: 10.19591/j.cnki.cn11-1974/tf.2019080009
ZHAO Xuan, LIAO Yan-ling, HUANG Yao-jie, TANG Hong-qun, WU Shang-hua, ZHANG Feng-lin. Research progress on dispersion method for nanodiamond[J]. Powder Metallurgy Technology, 2021, 39(1): 15-23. doi: 10.19591/j.cnki.cn11-1974/tf.2019080009
Citation: ZHAO Xuan, LIAO Yan-ling, HUANG Yao-jie, TANG Hong-qun, WU Shang-hua, ZHANG Feng-lin. Research progress on dispersion method for nanodiamond[J]. Powder Metallurgy Technology, 2021, 39(1): 15-23. doi: 10.19591/j.cnki.cn11-1974/tf.2019080009

纳米金刚石分散方法研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019080009
详细信息
    通讯作者:

    E-mail:zhangfl@gdut.edu.cn

  • 中图分类号: TG732

Research progress on dispersion method for nanodiamond

More Information
  • 摘要: 纳米金刚石具有金刚石和纳米材料的双重特性,由于心部–表面的sp3/sp2杂化结构以及丰富的表面悬键和官能团,使其在研磨抛光、减磨润滑、复合材料强化、药物载体、荧光吸收等领域有着广阔的应用前景。纳米金刚石多以数百纳米尺度的颗粒团聚,需要采用各种手段和方法分散至不同的液相体系中加以应用。本文对国内外纳米金刚石分散方法进行了总结,研究和分析了机械法、无机化学法、高能量场处理法以及表面有机化学改性法等分散手段的原理及特点。
  • 图  1  单个纳米金刚石颗粒结构示意图:(a)氧化纯化后单个粒径约5 nm的纳米金刚石结构;(b)sp2碳形成链和石墨斑;(c)纳米金刚石表面原子含氧官能团;(d)由高度有序金刚石核心组成的纳米金刚石[8]

    Figure  1.  Structure schematic diagram of the single nanodiamond particle: (a) the single nanodiamond structure with the paticle size of 5 nm after oxidative purification; (b) the sp2 carbon chains and the graphitic patches; (c) the oxygen-containing groups on the atom surfaces of nanodiamond; (d) the nanodiamond made up of the highly ordered diamond core[8]

    图  2  糖–盐辅助球磨分散纳米金刚石示意图[15]

    Figure  2.  Schematic diagram of the sugar-salt assisted ball milling for the dispersion of nanodiamonds[15]

    图  3  酸洗纳米金刚石示意图:(a)纳米金刚石颗粒表面的羧基–COOH双电层;(b)纳米金刚石颗粒在Fe2+作用下连接单个颗粒形成的桥接引起团聚[21]

    Figure  3.  Schematic diagram of the acid pickling for the dispersion of nanodiamonds: (a) the double electric layer formation of carboxyl–COOH at the nanodiamond particle surface; (b) the agglomeration by bridge bonding in the presence of iron ions of the nanodiamond particle[21]

    图  4  氧化或还原对纳米金刚石表面官能团的影响[25]

    Figure  4.  Effect of oxidation or reduction on the functional groups at the nanodiamond surface[25]

    图  5  纳米金刚石氧化退火示意图[31]

    Figure  5.  Schematic diagram of the nanodiamond oxidation annealing[31]

    图  6  硼烷还原法制备分散纳米金刚石示意图[47]

    Figure  6.  Schematic diagram of the nanodiamond preparation by borane reduction[47]

    图  7  磺基化制备分散纳米金刚石示意图:(a)苯基纳米金刚石的合成;(b)磺化纳米金刚石的合成[48]

    Figure  7.  Schematic diagram of the sulfonated nanodiamonds: (a) phenyl nanodiamonds; (b) sulfonated nanodiamonds[48]

    图  8  光接枝化制备分散纳米金刚石示意图[49]

    Figure  8.  Schematic diagram of the photo-grafted nano-diamond[49]

    图  9  化学枝接纳米金刚石示意图[52]

    Figure  9.  Schematic diagram of the chemically grafting nano-diamond[52]

    表  1  高能球磨分散纳米金刚石技术

    Table  1.   Dispersion method of the nanodiamond by high energy ball mill

    方法研磨介质介质尺寸 / μm纳米金刚石与研磨介质质量比超声功率 / W后处理纳米金刚石直径 / nm
    搅拌介质研磨[12]SiO2100400过滤、离心5~6
    微珠辅助超声研磨(BASD)[13]ZrO220(0.05~0.50):7400NaOH或HCl清洗4~5
    微珠辅助球磨[14]ZrO231.8±2.4500过滤、离心4
    盐辅助研磨[15]NaCl1:7HCl清洗并调节pH至11<10
    盐辅助超声研磨(SAUD)[16]NaCl2.5:100.0150两次洗涤、离心5~10
    介质辅助研磨[17]NH4HCO3, NaCl1:4:4400100 ℃热处理10 h除去水分100
    下载: 导出CSV

    表  2  纳米金刚石氧化退火工艺

    Table  2.   Oxidation annealing process of the nanodiamonds

    氧化温度 / ℃氧化时间 / h纳米金刚石直径 / nm参考文献
    42012.020.0[33]
    4251.522.8[34]
    4501.075.0[21]
    4502.050.0[35]
    350~4501.030.0~80.0[36]
    5001.050.0~100.0[37]
    6002.076.0[32]
    下载: 导出CSV

    表  3  不同等离子体辅助分散纳米金刚石

    Table  3.   Different plasma assisted dispersion of the nanodiamonds

    等离子体纳米金刚石直径 / nm参考文献
    N2125[40]
    He19、11[3839]
    H216[42]
    射频/激光辐射18~20[41]
    CF4400[43]
    下载: 导出CSV
  • [1] Zou Q, Wang M Z, Wang Y H. Properties and application prospect of nanometer sized diamond. Diamond Abras Eng, 2003, 5(2): 54 doi: 10.3969/j.issn.1006-852X.2003.02.017

    邹芹, 王明智, 王艳辉. 纳米金刚石的性能与应用前景. 金刚石与磨料磨具工程, 2003, 5(2): 54 doi: 10.3969/j.issn.1006-852X.2003.02.017
    [2] Daulton T L. Nanodiamonds in the cosmos: microstructural and trapped element isotopic data // Synthesis, Properties and Applications of Ultrananocrystalline Diamond. St. Petersburg, 2004: 49
    [3] Wang F F, Peng J, Zhang L Q, et al. Preparation of nanodiamond by crushing method and research on its grading technology. Superhard Mater Eng, 2016, 28(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004

    王芬芬, 彭进, 张琳琪, 等. 破碎法纳米金刚石的制备及其分级工艺研究. 超硬材料工程, 2016, 28(5): 15 doi: 10.3969/j.issn.1673-1433.2016.05.004
    [4] Yang G W, Wang J B, Liu Q X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys Condens Matter, 1998, 10(35): 7923 doi: 10.1088/0953-8984/10/35/024
    [5] Frenklach M, Howard W, Huang D, et al. Induced nucleation of diamond powder. Appl Phys Lett, 1991, 59(5): 546 doi: 10.1063/1.105434
    [6] Daulton T L, Kirk M A, Lewis R S, et al. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl Instrum Methods Phys Res Sect B, 2001, 175(8): 12
    [7] Banhart F, Ajayan P M. Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 1996, 382(6590): 433 doi: 10.1038/382433a0
    [8] Mochalin V N, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotechnol, 2012, 7(1): 11 doi: 10.1038/nnano.2011.209
    [9] Bondar V S, Puzyr A P. Use of nanodiamond particles for rapid isolation of recombinant apoobelin from escherichia coli. Dokl Biochem, 2000, 373(1-6): 129
    [10] Vaijayanthimala V, Lee D K, Kim S V, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Discovery, 2015, 12(5): 735 doi: 10.1517/17425247.2015.992412
    [11] Nunn N, Torelli M, McGuire G, et al. Nanodiamond: a high impact nanomaterial. Curr Opin Solid State Mater Sci, 2017, 21(1): 1 doi: 10.1016/j.cossms.2016.06.008
    [12] Kruger A, Kataoka F, Ozawa M, et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon, 2005, 43(8): 1722 doi: 10.1016/j.carbon.2005.02.020
    [13] Ozawa M, Inaguma M, Takahashi M, et al. Preparation and behavior of brownish, clear nanodiamond colloids. Adv Mater, 2007, 19(9): 1201 doi: 10.1002/adma.200601452
    [14] Eidelman E D, Siklitsky V I, Sharonova L V, et al. A stable suspension of single ultrananocrystalline diamond particles. Diamond Relat Mater, 2005, 14(11): 1765
    [15] Pentecost A, Gour S, Mochalin V, et al. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl Mater Interfaces, 2010, 2(11): 3289 doi: 10.1021/am100720n
    [16] Turcheniuk K, Trecazzi C, Deeleepojananan C, et al. Salt-assisted ultrasonic deaggregation of nanodiamond. ACS Appl Mater Interfaces, 2016, 8(38): 25461 doi: 10.1021/acsami.6b08311
    [17] Khan M, Li T H, Zhao T K, et al. Comparative study of the ball milling and acid treatment of functionalized nanodiamond composites. Int J Refract Met Hard Mater, 2018, 73(1): 46
    [18] Wang P, Zhu F, Wang Z Q. Effect of dispersion of nanodiamond in aqueous medium by ultrasonic and dispersants. Diamond Abras Eng, 2015, 35(2): 46

    王沛, 朱峰, 王志强. 超声波以及分散剂对纳米金刚石在水性介质中分散行为的影响. 金刚石与磨料磨具工程, 2015, 35(2): 46
    [19] Cao R J, Lin C G, Sun L, et al. Agglomeration of superfine powder and dispersion methods. Powder Metall Technol, 2006, 24(6): 460 doi: 10.3321/j.issn:1001-3784.2006.06.015

    曹瑞军, 林晨光, 孙兰, 等. 超细粉末的团聚及其消除方法. 粉末冶金技术, 2006, 24(6): 460 doi: 10.3321/j.issn:1001-3784.2006.06.015
    [20] Li Y, Li B X, Zhao M Y, et al. The dispersion behavior of nano-diamond in aqueous medium. Superhard Mater Eng, 2010, 22(2): 5 doi: 10.3969/j.issn.1673-1433.2010.02.002

    李颖, 李变晓, 赵盟月, 等. 水性介质中纳米金刚石分散行为研究. 超硬材料工程, 2010, 22(2): 5 doi: 10.3969/j.issn.1673-1433.2010.02.002
    [21] Aleksenskiy A E, Eydelman E D, Vul A Y. Deagglomeration of detonation nanodiamonds. Nanosci Nanotechnol Lett, 2011, 3(1): 68 doi: 10.1166/nnl.2011.1122
    [22] Guan B. Surface Functionalization and Applications of Nanodiamond and Boron-Doped Diamond Materials[Dissertation]. Beijing: Technical Institute of Physics and Chemistry CAS, 2009

    关波. 纳米金刚石及金刚石薄膜材料的功能化修饰及应用研究[学位论文]. 北京: 中国科学院理化技术研究所, 2009
    [23] Pedroso-Santana S, Sarabia-Saínz A, Fleitas-Salazar N, et al. Deagglomeration and characterization of detonation nanodiamonds for biomedical applications. J Appl Biomed, 2017, 15(1): 15 doi: 10.1016/j.jab.2016.09.003
    [24] Liu K K, Cheng C L, Chang C C, et al. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology, 2007, 18(32): 5102
    [25] Krüger A, Liang Y J, Jarre G, et al. Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem, 2006, 16(24): 2322 doi: 10.1039/B601325B
    [26] Miao W P, Ding Y L, Zhai L P, et al. Progress of research on nano-diamond dispersion. Diamond Abras Eng, 2019, 39(1): 18

    苗卫朋, 丁玉龙, 翟黎鹏, 等. 爆轰法合成纳米金刚石的分散技术研究进展. 金刚石与磨料磨具工程, 2019, 39(1): 18
    [27] Williams O A, Hees J, Dieker C, et al. Size-dependent reactivity of diamond nanoparticles. ACS Nano, 2010, 4(8): 4824 doi: 10.1021/nn100748k
    [28] Tsubota T, Mihara S, Murakam N, et al. Chemical modification of diamond surface with linoleic acid by using benzoyl peroxide. Diamond Relat Mater, 2011, 20(4): 584 doi: 10.1016/j.diamond.2011.03.009
    [29] Myllymäki V, Helsinki. Zeta Positive Hydrogenated Nanodiamond Power, Zetapositive Single Digit Hydrogenated Nanodiamond Dispersion, and Methods for Producing the Same: US Patent, US9884767 B2. 2018-02-06
    [30] Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater, 2012, 22(5): 890 doi: 10.1002/adfm.201102670
    [31] Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface hemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc, 2006, 128(35): 11635 doi: 10.1021/ja063303n
    [32] Gaebel T, Bradac C, Chen J, et al. Size-reduction of nanodiamonds via air oxidation. Diamond Relat Mater, 2012, 21(10): 28
    [33] Pichot V, Comet M, Fousson E, et al. An efficient purification method for detonation nanodiamonds. Diamond Relat Mater, 2008, 17(1): 13 doi: 10.1016/j.diamond.2007.09.011
    [34] Li C C, Huang C L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf A, 2010, 353(1): 52 doi: 10.1016/j.colsurfa.2009.10.019
    [35] Xu K, Xue Q J. A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Phys Solid State, 2004, 46(4): 649 doi: 10.1134/1.1711442
    [36] Shenderova O, Petrov I, Walsh J, et al. Modification of detonation nanodiamonds by heat treatment in air. Diamond Relat Mater, 2006, 15(11): 1799
    [37] Wang X H, Wang J, Li X J, et al. Study on stable dispersion of detonation nanodiamond in base oil. J Funct Mater, 2014, 45(20): 20060 doi: 10.3969/j.issn.1001-9731.2014.20.013

    王小红, 王俊, 李晓杰, 等. 爆轰纳米金刚石在基础油中稳定分散研究. 功能材料, 2014, 45(20): 20060 doi: 10.3969/j.issn.1001-9731.2014.20.013
    [38] Mohan N, Tzeng Y K, Yang L, et al. Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv Mater, 2010, 22(7): 843 doi: 10.1002/adma.200901596
    [39] Chang Y R, Lee H Y, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol, 2008, 3(5): 284 doi: 10.1038/nnano.2008.99
    [40] Gibson N, Shenderova O, Luo T J M, et al. Colloidal stability of modified nanodiamond particles. Diamond Relat Mater, 2009, 18(4): 620 doi: 10.1016/j.diamond.2008.10.049
    [41] Kozak H, Artemenko A, Čermák J, et al. Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio-frequency plasma treatment. Vib Spectrosc, 2016, 83(1): 108
    [42] Girard H A, Arnault J C, Perruchas S, et al. Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diamond Relat Mater, 2010, 19(7): 1117
    [43] Ray M A, Shenderova O, Hook W, et al. Cold plasma functionalization of nanodiamond particles. Diamond Relat Mater, 2006, 15(11-12): 1809 doi: 10.1016/j.diamond.2006.06.003
    [44] Zhang T P. Research of Deagglomeration of Detonation Nanodiamond by Laser Ablation and Its Mechanism of Fluorescence[Dissertation]. Tianjing: Tianjin University, 2009

    张泰平. 纳米金刚石的激光分散及发光机理研究[学位论文]. 天津: 天津大学, 2009
    [45] Xu X Y, Zhu Y W, Wang B C. Study on the deagglomeration of nanodiamonds in water-based systems // Progress of Nanostructured Materials and Technical Applications: Proceedings of the 3rd National Conference on Nanomaterials and Technology Applications. Nanjing, 2003: 195

    许向阳, 朱永伟, 王柏春. 水基体系中纳米金刚石的解团聚研究//纳米材料和技术应用进展—全国第三届纳米材料和技术应用会议论文集. 南京, 2003: 195
    [46] Liang Y, Meinhardt T, Jarre G, et al. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci, 2011, 354(1): 23 doi: 10.1016/j.jcis.2010.10.044
    [47] Krueger A, Stegk J, Liang Y J, et al. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 2008, 24(8): 4200 doi: 10.1021/la703482v
    [48] Kuznetsov O, Sun Y Q, Thaner R, et al. Water-soluble nanodiamond. Langmuir, 2012, 28(11): 5243 doi: 10.1021/la204660h
    [49] Beyler-Çiğil A, Kahraman M V. Effect of surface modification on nano-diamond particles for surface and thermal property of UV-curable hybrid coating. Prog Org Coat, 2016, 101(10): 468
    [50] Zhang Q X, Naito K, Tanaka Y, et al. Grafting polyimides from nanodiamonds. Macromolecules, 2008, 41(3): 536 doi: 10.1021/ma702268x
    [51] Ma W J, Yu X Y, Qu X W, et al. Functionalization of agglomerating nanodiamonds with biodegradable poly(ε-caprolactone) through surface-initiated polymerization. Diamond Relat Mater, 2016, 62: 14 doi: 10.1016/j.diamond.2015.12.011
    [52] Hu H X, Guo H M, Yu X Y, et al. Surface modification and disaggregation of detonation nanodiamond particles with biodegradable polyurethane. Colloids Surf A, 2019, 563(20): 302
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1748
  • HTML全文浏览量:  214
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回