碳包覆CdS纳米颗粒的光学性能研究

马强 王健 韦琪龙 路承功 魏智强

马强, 王健, 韦琪龙, 路承功, 魏智强. 碳包覆CdS纳米颗粒的光学性能研究[J]. 粉末冶金技术, 2021, 39(1): 54-61. doi: 10.19591/j.cnki.cn11-1974/tf.2019080014
引用本文: 马强, 王健, 韦琪龙, 路承功, 魏智强. 碳包覆CdS纳米颗粒的光学性能研究[J]. 粉末冶金技术, 2021, 39(1): 54-61. doi: 10.19591/j.cnki.cn11-1974/tf.2019080014
MA Qiang, WANG Jian, WEI Qi-long, LU Cheng-gong, WEI Zhi-qiang. Investigation on optical properties of carbon-encapsulated CdS nanoparticles[J]. Powder Metallurgy Technology, 2021, 39(1): 54-61. doi: 10.19591/j.cnki.cn11-1974/tf.2019080014
Citation: MA Qiang, WANG Jian, WEI Qi-long, LU Cheng-gong, WEI Zhi-qiang. Investigation on optical properties of carbon-encapsulated CdS nanoparticles[J]. Powder Metallurgy Technology, 2021, 39(1): 54-61. doi: 10.19591/j.cnki.cn11-1974/tf.2019080014

碳包覆CdS纳米颗粒的光学性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019080014
基金项目: 国家自然科学基金资助项目(51261015);甘肃省自然科学基金资助项目(1308RJZA238)
详细信息
    通讯作者:

    E-mail: lcg9296@163.com

  • 中图分类号: TB332

Investigation on optical properties of carbon-encapsulated CdS nanoparticles

More Information
  • 摘要: 采用水热法制备了核壳结构的碳包覆CdS纳米颗粒(CdS@C),利用X射线衍射、高分辨透射电子显微镜和光谱仪研究了碳包覆层对CdS@C的微观结构与光学性能影响。结果表明,碳包覆CdS纳米颗粒具有明显的核壳结构,内核为六方纤锌矿结构CdS,外壳为碳层。颗粒形貌主要为球形或椭球形结构,粒度均匀,分散性良好,粒径分布在20~60 nm范围,平均粒径为35 nm,外壳碳层的厚度为5 nm。光致发光光谱显示碳包覆CdS的发光强度比纯CdS弱,Raman光谱表明碳包覆CdS样品中碳包覆层的石墨化程度较低,傅里叶变换红外光谱表明纯CdS和碳包覆CdS样品的吸收峰位基本相近,紫外‒可见吸收光谱表明碳包覆CdS纳米晶提高了可见光吸收强度,能隙变窄,发生了红移现象。
  • 图  1  CdS和CdS@C颗粒的X射线衍射图谱

    Figure  1.  XRD pattern of the pure CdS and CdS@C particles

    图  2  CdS样品的高分辨透射电子显微形貌(a)和粒径分布(b)

    Figure  2.  HRTEM images (a) and the particle size distribution (b) of the CdS samples

    图  3  碳包覆CdS样品的高分辨透射电子显微图形貌(a)和粒径分布(b)

    Figure  3.  HRTEM images (a) and the particle size distribution (b) of the CdS@C samples

    图  4  碳包覆CdS样品的高分辨透射电子显微图形貌(a)和选区电子衍射(b)

    Figure  4.  HRTEM images (a) and the selected area electron diffraction pattern (b) of the CdS@C samples

    图  5  碳包覆CdS样品的X射线能谱图

    Figure  5.  EDS pattern of the CdS@C samples

    图  6  CdS和碳包覆CdS样品的光致发光谱图

    Figure  6.  PL spectrum of the pure CdS and CdS@C samples

    图  7  碳包覆CdS纳米颗粒的Raman光谱图

    Figure  7.  Raman spectrum of the CdS@C samples

    图  8  CdS和碳包覆CdS样品的傅立叶变换红外光谱

    Figure  8.  FT-IR spectra of the pure CdS and CdS@C samples

    图  9  CdS和碳包覆CdS样品的紫外可见吸收光谱

    Figure  9.  UV-vis patterns of the pure CdS and CdS@C samples

    表  1  CdS和CdS@C样品的X射线衍射测算结果

    Table  1.   XRD results of CdS and CdS@C samples

    样品2θ / (°)半峰宽晶面间距 / nm晶粒尺寸 / nm晶格常数 / nm
    CdS26.6420.3980.33420.28a=41.096,c=66.812
    CdS@C26.5760.4870.33516.57a=41.007,c=67.547
    下载: 导出CSV
  • [1] Yang X D, Wang Z S, Lü X Z, et al. Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis. J Photochem Photobiol A, 2016, 329: 175 doi: 10.1016/j.jphotochem.2016.07.005
    [2] Liu Y D, Ren L, Qi X, et al. One-step hydrothermal fabrication and enhancement of the photocatalytic performance of CdMoO4/CdS hybrid materials. RSC Adv, 2014, 4(17): 8772 doi: 10.1039/c3ra46051g
    [3] Liu I P, Chen L Y, Lee Y L. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells. J Power Sources, 2016, 325: 706 doi: 10.1016/j.jpowsour.2016.06.095
    [4] Fan K, Liao C, Xu R L, et al. Effect of shell thickness on electrochemical property of wurtzite CdSe/CdS core/shell nanocrystals. Chem Phys Lett, 2015, 633: 1 doi: 10.1016/j.cplett.2015.05.006
    [5] Yang H, Kershaw S V, Wang Y, et al. Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites. J Phys Chem C, 2013, 117(40): 20406 doi: 10.1021/jp405227t
    [6] Ma B, Xu H, Lin K, et al. Mo2C as non-noble metal Co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. Chemsuschem, 2016, 9(8): 820 doi: 10.1002/cssc.201501652
    [7] Yan X, Wu Z, Huang C, et al. Hydrothermal synthesis of CdS/CoWO4, heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceram Int, 2017, 43(7): 5388 doi: 10.1016/j.ceramint.2016.12.060
    [8] Kumar S, Mehta S K. Varying photoluminescence emission of CdS nanoparticles in aqueous medium: A comparative study on effect of surfactant structure. Nano-Structures Nano-Objects, 2015, 2: 1 doi: 10.1016/j.nanoso.2015.05.002
    [9] Zirak M, Akhavan O, Moradlou O, et al. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloys Compd, 2014, 590(4): 507
    [10] Yang H, Jin Z, Fan K, et al. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices Microstruct, 2017, 111: 687 doi: 10.1016/j.spmi.2017.07.025
    [11] Wang Y F, Chen W, Chen X, et al. Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis. J Environ Sci, 2018, 65(3): 347
    [12] Jo W K, Selvam N C S. Fabrication of photostable ternary CdS/MoS2/MWCNs hybrid photocatalysts with enhanced H2, generation activity. Appl Catal A, 2016, 525: 9 doi: 10.1016/j.apcata.2016.06.036
    [13] Zhang Z, Ren Y, Han L, et al. Mixed-solvothermal synthesis of CdS micro/nanostructures with optical and ferromagnetic properties. Physica E, 2017, 92: 30 doi: 10.1016/j.physe.2017.04.027
    [14] Zou S, Fu Z, Xiang C, et al. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chin J Catal, 2015, 36(7): 1077 doi: 10.1016/S1872-2067(15)60827-0
    [15] Li D, Xie J, Zhang Y, et al. Convenient synthesis of magnetically recyclable Fe3O4@C@CdS photocatalysts by depositing CdS nanocrystals on carbonized ferrocene. J Alloys Compd, 2015, 646: 978 doi: 10.1016/j.jallcom.2015.06.075
    [16] Hu Y, Gao X, Yu L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem Int Ed, 2013, 52(21): 5636 doi: 10.1002/anie.201301709
    [17] Liu Y, Yu Y X, Zhang W D. Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. J Alloys Compd, 2013, 569(9): 102
    [18] Patel J D, Vu T T D, Mighri F. Preparation and characterization of CdS coated multiwalled carbon nanotubes. Mater Lett, 2017, 196: 161 doi: 10.1016/j.matlet.2017.03.046
    [19] Wang F, Liang L, Chen K, et al. CO2, induced template approach to fabricate the porous C/CdS visible photocatalyst with superior activity and stability. J Mol Catal A Chem, 2016, 425: 76 doi: 10.1016/j.molcata.2016.09.034
    [20] Chen R, Han B, Yang L, et al. Controllable synthesis and characterization of CdS quantum dots by a microemulsion-mediated hydrothermal method. J Lumin, 2016, 172: 197 doi: 10.1016/j.jlumin.2015.12.006
    [21] Zhang J M, Wang J, Zhang J, et al. Preparation of graphene oxide composites and study on adsorption properties of copper ions. Powder Metall Technol, 2018, 36(6): 445

    张建民, 王晶, 张继, 等. 氧化石墨烯复合材料的制备及对铜离子吸附性能的研究. 粉末冶金技术, 2018, 36(6): 445
    [22] Li L, Dong G X, Li Z F, et al. Effects of solid phase reaction conditions on electrochemical performance of lithium iron phosphate. Powder Metall Technol, 2019, 37(5): 332

    李雷, 董桂霞, 李宗峰, 等. 固相反应条件对磷酸铁锂电化学性能的影响. 粉末冶金技术, 2019, 37(5): 332
    [23] Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363

    魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363
    [24] Zou S, Fu Z H, Zeng M, et al. Study on preparation of CuS/CdS photocatalysts and their photocatalytic performance. J Nat Sci Hunan Normal Univ, 2016, 39(5): 57 doi: 10.7612/j.issn.1000-2537.2016.05.009

    邹帅, 伏再辉, 曾明, 等. CuS/CdS光催化剂的制备及其光催化性能研究. 湖南师范大学自然科学学报, 2016, 39(5): 57 doi: 10.7612/j.issn.1000-2537.2016.05.009
    [25] Zhou M, Hu Y, Liu Y, et al. Microwave-assisted route to fabricate coaxial ZnO/C/CdS nanocables with enhanced visible light-driven photocatalytic activity. Crystengcomm, 2012, 14(22): 7686 doi: 10.1039/c2ce25540e
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  149
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回