铁酸锌的制备及光催化作用研究现状

王冬斌 梁精龙 王新蕊 李慧 王晶

王冬斌, 梁精龙, 王新蕊, 李慧, 王晶. 铁酸锌的制备及光催化作用研究现状[J]. 粉末冶金技术, 2022, 40(4): 296-301. doi: 10.19591/j.cnki.cn11-1974/tf.2019090011
引用本文: 王冬斌, 梁精龙, 王新蕊, 李慧, 王晶. 铁酸锌的制备及光催化作用研究现状[J]. 粉末冶金技术, 2022, 40(4): 296-301. doi: 10.19591/j.cnki.cn11-1974/tf.2019090011
WANG Dong-bin, LIANG Jing-long, WANG Xin-rui, LI Hui, WANG Jing. Research status of preparation and photocatalysis of zinc ferrite[J]. Powder Metallurgy Technology, 2022, 40(4): 296-301. doi: 10.19591/j.cnki.cn11-1974/tf.2019090011
Citation: WANG Dong-bin, LIANG Jing-long, WANG Xin-rui, LI Hui, WANG Jing. Research status of preparation and photocatalysis of zinc ferrite[J]. Powder Metallurgy Technology, 2022, 40(4): 296-301. doi: 10.19591/j.cnki.cn11-1974/tf.2019090011

铁酸锌的制备及光催化作用研究现状

doi: 10.19591/j.cnki.cn11-1974/tf.2019090011
基金项目: 国家自然科学基金资助项目(51874141);唐山市科技创新团队培养计划项目(21130207D)
详细信息
    通讯作者:

    E-mail: 13373150280@163.com

  • 中图分类号: TB31

Research status of preparation and photocatalysis of zinc ferrite

More Information
  • 摘要: 为提高铁酸锌的催化效率,可采用增加比表面积、优化表面形貌的方法,也可将铁酸锌与其他材料结合,获得更为高效实用的光催化剂。文章对铁酸锌复合改性方式和不同形貌铁酸锌的制备方法进行了分析,并对改性后颗粒粒径不均问题和未来研究方向做了讨论和展望。将铁酸锌与其他物质复合,制备出活性高且性能稳定的复合光催化剂,可提升复合材料的催化能力,缓解铁酸锌催化活性低的问题。制备不同形貌的铁酸锌,可增加铁酸锌的比表面积,提高铁酸锌催化效率。
  • 图  1  含不同质量分数镍锌铁氧体的ZnO/NZF扫描电子显微形貌[16]:(a)2.0%;(b)4.0%;(c)6.0%

    Figure  1.  SEM images of the zinc ferrite samples with different NZF mass fraction[16]: (a) 2.0%; (b) 4.0%; (c) 6.0%

    图  2  ZnFe2O4 / TiO2 /片状石墨复合材料的扫描电子显微形貌[17]:(a)片状石墨的扫描电子显微形貌;(b)片状石墨复合ZnFe2O4 / TiO2的扫描电子显微形貌

    Figure  2.  SEM image of ZnFe2O4 / TiO2 / flake graphite composite[17]: (a) SEM image of bare flake graphite; (b) SEM image of ZnFe2O4/TiO2/flake graphite composite

    图  3  ZnFe2O4纳米棒的透射电子显微形貌[18]:(a)200 nm;(b)100 nm

    Figure  3.  TEM image of ZnFe2O4 nanorods[18]: (a) 200 nm; (b) 100 nm

    图  4  ZnFe2O4空心球扫描电子显微形貌[19]:(a)添加蔗糖;(b)未添加蔗糖

    Figure  4.  SEM images of the ZnFe2O4 hollow sphere[19]: (a) with sucrose; (b) without sucrose

    图  5  不同温度下ZnFe2O4纤维的扫描电子显微形貌[20]:(a)、(b)500 ℃;(c)、(d)700 ℃;(e)1000 ℃

    Figure  5.  SEM images of the ZnFe2O4 fibers at different temperatures[20]: (a), (b) 500 ℃; (c), (d) 700 ℃; (e) 1000 ℃

  • [1] Yang J L, Liu J G, Xiao H X, et al. Overview of study of zinc ferrite in zinc metallurgy. Multipurpose Utiliz Miner Resour, 2017, 38(6): 13 doi: 10.3969/j.issn.1000-6532.2017.06.004

    杨金林, 刘继光, 肖汉新, 等. 锌冶金中铁酸锌研究概述. 矿产综合利用, 2017, 38(6): 13 doi: 10.3969/j.issn.1000-6532.2017.06.004
    [2] Geng T, Yu X, Wang X Z, et al. Study on octahedral nano-crystal ZnFe2O4: preparation and photo-catalytic characteristics. Environ Sci Technol, 2018, 41(7): 50 doi: 10.19672/j.cnki.1003-6504.2018.07.009

    耿涛, 余轩, 王心泽, 等. 铁酸锌八面体纳米材料的制备及其光催化性能. 环境科学与技术, 2018, 41(7): 50 doi: 10.19672/j.cnki.1003-6504.2018.07.009
    [3] Yao Y J, Qin J C, Cai Y M, et al. Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation. Environ Sci Pollut Res, 2014, 21(12): 7296 doi: 10.1007/s11356-014-2645-x
    [4] Feng Q J, Wang G J, Wu D, et al. Preparation and modification of zinc ferrite desulfurizer for high temperature coke oven gas. Sci Technol Chem Ind, 2015, 23(5): 16 doi: 10.3969/j.issn.1008-0511.2015.05.004

    冯庆吉, 王广建, 吴栋, 等. 高温焦炉气脱硫剂铁酸锌的制备及改性. 化工科技, 2015, 23(5): 16 doi: 10.3969/j.issn.1008-0511.2015.05.004
    [5] Ma Y P, Li H, Hao B C, et al. Research progress and preparation of nanometer zinc ferrite used in anode materials of lithiumion batteries. Powder Metall Technol, 2021, 39(4): 350

    马悦鹏, 李慧, 郝百川, 等. 锂离子电池负极材料用纳米铁酸锌的制备及研究进展. 粉末冶金技术, 2021, 39(4): 350
    [6] Zeng X F, Wang M H, Lu Y L, et al. Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites. Powder Metall Technol, 2018, 36(2): 130

    曾雄丰, 王梦幻, 路彦丽, 等. TiO2柱撑石墨烯复合材料的制备及光催化性能. 粉末冶金技术, 2018, 36(2): 130
    [7] Wu H P, Ling H, Zhang Z, et al. Research progress on photocatalytic activity of ferroelectric materials. Acta Phys Sin, 2017, 66(16): 167702 doi: 10.7498/aps.66.167702

    吴化平, 令欢, 张征, 等. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702 doi: 10.7498/aps.66.167702
    [8] Huang Y F, Farooq M U, Lai S X, et al. Model fitting of sorption kinetics data: misapplications overlooked and their rectifications. AIChE J, 2018, 64(5): 1793 doi: 10.1002/aic.16051
    [9] Mao S, Bao R, Yi J H, et al. Preparation and photocatalytic properties of Ag/AgCl composite powders. Powder Metall Technol, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010

    毛帅, 鲍瑞, 易健宏, 等. Ag/AgCl复合粉末的制备及光催化性能研究. 粉末冶金技术, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010
    [10] Hou G Q, Li Y K, Wang X Y. Research progress of zinc ferrite as photocatalys. Mater Rev. 2018, 32(1): 51

    侯桂芹, 李云凯, 王晓燕. 铁酸锌作为光催化剂的研究进展. 材料导报, 2018, 32(1): 51
    [11] Savunthari K V, Shanmugam S. Effect of co-doping of bismuth, copper and cerium in zinc ferrite on the photocatalytic degradation of bisphenol A. J Taiwan Inst Chem Eng, 2019, 101: 105 doi: 10.1016/j.jtice.2019.04.042
    [12] Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng, 2019, 96: 185 doi: 10.1016/j.jtice.2018.11.006
    [13] Lu F, Meng F M. Research evolution of doping modification on TiO2 photocatalyst. Bull Chin Ceram Soc, 2011, 30(1): 116

    鲁飞, 孟凡明. TiO2光催化剂掺杂改性研究进展. 硅酸盐通报, 2011, 30(1): 116
    [14] Shen Y, Pan J H, Jiang R, et al. Study on photocatalytic decolorization of dye wastewater by ZnFe2O4/graphene nanoplates composites. Text Auxil, 2015, 32(11): 29 doi: 10.3969/j.issn.1004-0439.2015.11.006

    沈栎, 潘军辉, 蒋茹, 等. ZnFe2O4/石墨烯纳米片复合材料光催化染料废水脱色研究. 印染助剂, 2015, 32(11): 29 doi: 10.3969/j.issn.1004-0439.2015.11.006
    [15] Liu C, Wang B Q, Wang T S, et al. Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures. Sens Actuators B, 2017, 248: 902 doi: 10.1016/j.snb.2017.01.133
    [16] Wang W, Li N, Hong K, et al. Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: Enhanced activity under UV and visible irradiation. J Alloys Compd, 2019, 777: 1108
    [17] Jia D, Yu J, Long S M, et al. Novel ZnFe2O4/TiO2/flake graphite composite as particle electrodes for efficient photoelectrocatalytic degradation of rhodamine B in water. Water Sci Technol, 2018, 2017(3): 752 doi: 10.2166/wst.2018.248
    [18] Jia Z G, Ren D P, Liang Y C, et al. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity. Mater Lett, 2011, 65(19): 3116
    [19] Yang H R, Bai X J, Hao P, et al. A simple gas sensor based on zinc ferrite hollow spheres: highly sensitivity, excellent selectivity and long-term stability. Sens Actuators B, 2019, 280: 34 doi: 10.1016/j.snb.2018.10.056
    [20] Gong C R, Chen D R, Jiao X L. Sol-gel synthesis of hollow zinc ferrite fibers. J Sol-Gel Sci Technol, 2005, 35(1): 77 doi: 10.1007/s10971-005-1498-7
  • 加载中
图(5)
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  213
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回