粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究

王琪 张冰清 王邃 王华磊 江峰 孙军

王琪, 张冰清, 王邃, 王华磊, 江峰, 孙军. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究[J]. 粉末冶金技术, 2021, 39(1): 33-40. doi: 10.19591/j.cnki.cn11-1974/tf.2019110004
引用本文: 王琪, 张冰清, 王邃, 王华磊, 江峰, 孙军. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究[J]. 粉末冶金技术, 2021, 39(1): 33-40. doi: 10.19591/j.cnki.cn11-1974/tf.2019110004
WANG Qi, ZHANG Bing-qing, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials[J]. Powder Metallurgy Technology, 2021, 39(1): 33-40. doi: 10.19591/j.cnki.cn11-1974/tf.2019110004
Citation: WANG Qi, ZHANG Bing-qing, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials[J]. Powder Metallurgy Technology, 2021, 39(1): 33-40. doi: 10.19591/j.cnki.cn11-1974/tf.2019110004

粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019110004
基金项目: 国家自然科学基金资助项目(51621063)
详细信息
    通讯作者:

    E-mail:jiangfeng@mail.xjtu.edu.cn

  • 中图分类号: TF125

Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials

More Information
  • 摘要: 对Fe–Ni–Cu–C–Mo粉末锻造材料的锻后热处理工艺进行了研究,通过动态连续冷却转变试验绘制出该材料的连续冷却转变(continuous cooling transformation,CCT)曲线,指导材料锻后冷却工艺的选取。对Fe–Ni–Cu–C–Mo淬火试样进行不同温度的低温回火试验,探究不同回火温度对该材料微观组织与力学性能的影响。结果表明,当锻后冷却速率大于7.0 ℃·s−1时,Fe–Ni–Cu–C–Mo粉锻材料组织全为马氏体,硬度趋于稳定;在150 ℃和175 ℃回火,碳化物均匀地分布在马氏体板条内部,起到析出强化的作用,材料表现出优异的抗拉性能。
  • 图  1  Fe–Ni–Cu–C–Mo材料粉锻产品[12]

    Figure  1.  Powder forging products of the Fe–Ni–Cu–C–Mo materials[12]

    图  2  Q61粉末锻造致密试样

    Figure  2.  Powder forging compact samples of the Q61 materials

    图  3  动态连续冷却转变试验

    Figure  3.  Operation scheme of the dynamic continuous cooling transformation test

    图  4  升温速率0.1 ℃·s−1的试样膨胀曲线

    Figure  4.  Expansion curve of the samples with the temperature rising rate of 0.1 ℃·s−1

    图  6  粉锻Q61材料不同冷却速率对应的维氏硬度和马氏体体积分数

    Figure  6.  Vickers hardness and the martensite volume fraction of the powder forged Q61 materials with different cooling rates

    图  7  粉锻Q61材料的动态连续冷却转变曲线

    Figure  7.  Dynamic CCT curves of the powder forged Q61 materials

    图  8  粉锻Q61材料不同温度回火后金相组织:(a)150 ℃;(b)175 ℃;(c)200 ℃;(d)225 ℃

    Figure  8.  Metallographic structures of the powder forged Q61 materials tempered at different temperatures: (a) 150 ℃; (b) 175 ℃; (c) 200 ℃; (d) 225 ℃

    图  9  粉锻Q61材料不同温度回火后的扫描电子显微形貌:(a)150 ℃;(b)175 ℃;(c)200 ℃;(d)225 ℃

    Figure  9.  SEM morphology of the powder forged Q61 materials tempered at different temperatures: (a) 150 ℃; (b) 175 ℃; (c) 200 ℃; (d) 225 ℃

    图  10  粉锻Q61材料的X射线衍射图谱

    Figure  10.  XRD patterns of the powder forged Q61 materials

    图  11  不同回火温度下粉锻Q61材料力学性能:(a)硬度;(b)强度

    Figure  11.  Mechanical properties of the powder forged Q61 materials at different tempering temperatures: (a) hardness; (b) strength

    图  12  Q61粉锻标准块不同温度回火后的透射电子显微组织:(a)150 ℃;(b)175 ℃;(c)200 ℃;(d)225 ℃

    Figure  12.  TEM morphology of the powder forged Q61 materials at different tempering temperatures: (a) 150 ℃; (b) 175 ℃; (c) 200 ℃; (d) 225 ℃

    图  13  ε碳化物衍射斑点标定

    Figure  13.  Diffraction spots of the epsilon carbides

    表  1  Q61合金粉末化学成分(质量分数)

    Table  1.   Chemical composition of the Q61 ally powders

    %
    NiCuCMoFe
    1.7561.000.600.552余量
    下载: 导出CSV

    表  2  粉锻Q61材料不同冷却速率对应的相变点温度

    Table  2.   Temperatures at the phase transition points of the powder forged Q61 materials at different cooling rates

    冷却速率 / (℃·s−1)A→P开始温度 / ℃A→P结束温度 / ℃A→M开始温度 / ℃A→M结束温度 / ℃
    0.2575425
    0.5571404
    0.7556387250175
    1.0556385263188
    2.0530374267180
    3.0527360275168
    5.0500462290145
    7.0295157
    15.0313138
    30.0324130
    50.0332138
    下载: 导出CSV
  • [1] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [2] Guo B, Ge C C, Zhang S C, et al. Powder forging technology and its application process. Powder Metall Ind, 2011, 21(3): 45 doi: 10.3969/j.issn.1006-6543.2011.03.010

    郭彪, 葛昌纯, 张随财, 等. 粉末锻造技术与应用进展. 粉末冶金工业, 2011, 21(3): 45 doi: 10.3969/j.issn.1006-6543.2011.03.010
    [3] Guo B. Study on Powder Forging and Densification Forming Technology of Ferrous Alloy [Dissertation]. Chengdu: Southwest Jiaotong University, 2012

    郭彪. 铁基材料粉末锻造及致密化成形技术研究[学位论文]. 成都: 西南交通大学, 2012
    [4] Kuhn H A, Ferguson B L. Powder Forging. Princeton: Metal Powder Industries Federation, 1990
    [5] Boreczky E, Han F L. North America's PM industry: The challenges of an evolving automotive market. Powder Metall Technol, 2015, 33(3): 232 doi: 10.3969/j.issn.1001-3784.2015.03.014

    Boreczky Eric, 韩凤麟. 北美粉末冶金汽车零件产业的发展与前景. 粉末冶金技术, 2015, 33(3): 232 doi: 10.3969/j.issn.1001-3784.2015.03.014
    [6] MPIF. Plenary sessions highlight continued growth for global Powder Metallurg // World PM2018: Metal Powder Report. Beijing, 2017: 79
    [7] Wang Y K, Peng M G. The generalization of powder forging process and technology. Met Mater Metall Eng, 2007, 35(5): 57 doi: 10.3969/j.issn.1005-6084.2007.05.014

    王云坤, 彭茂公. 粉末锻造工艺技术的发展概况. 金属材料与冶金工程, 2007, 35(5): 57 doi: 10.3969/j.issn.1005-6084.2007.05.014
    [8] Yang S, Xiao Z Y, Guan H J, et al. Microstructure and mechanical properties of sintered and forged Fe–2Cu–0.5C–0.11S materials. Powder Metall Technol, 2017, 35(1): 23 doi: 10.3969/j.issn.1001-3784.2017.01.004

    杨硕, 肖志瑜, 关航健, 等. 烧结和锻造态Fe–2Cu–0.5C–0.11S材料的组织与力学性能研究. 粉末冶金技术, 2017, 35(1): 23 doi: 10.3969/j.issn.1001-3784.2017.01.004
    [9] Wang S, Wang Q, Wang H L, et al. Effects of copper content on microstructure and mechanical properties of powder-forged rod Fe–C–Cu alloys manufactured at elevated temperature. Mater Sci Eng A, 2019, 743: 197
    [10] Bai L N, Liu F P, Wang S, et al. Microstructure and mechanical properties of Fe–C–Cu powder-forged connecting rod. Acta Metall Sin, 2016, 52(1): 41 doi: 10.11900/0412.1961.2015.00486

    柏琳娜, 刘福平, 王邃, 等. Fe–C–Cu粉末锻造汽车发动机连杆的组织与力学性能. 金属学报, 2016, 52(1): 41 doi: 10.11900/0412.1961.2015.00486
    [11] Sun L, Zhou C F, Wang H Y, et al. Microstructure and mechanical properties of powder metallurgy forging bilayer cam. Powder Metall Technol, 2017, 35(6): 403

    孙露, 周春芳, 王惠亚, 等. 粉末热锻双层材料凸轮的显微组织与力学性能. 粉末冶金技术, 2017, 35(6): 403
    [12] Zhang B Q, Wang Q, Wang S, et al. Study on the microstructure and properties of powder-forged gear materials. Powder Metall Technol, 2020, 38(2): 113

    张冰清, 王琪, 王邃, 等. 粉末锻造齿轮材料的组织与性能研究. 粉末冶金技术, 2020, 38(2): 113
    [13] Han F L. Introduction of US MPIF Standard 35 “P/F steel parts material standard” . Powder Metall Technol, 2000, 18(4): 292 doi: 10.3321/j.issn:1001-3784.2000.04.010

    韩风麟. 美国MPIF标准35“P/F钢零件材料标准”简介. 粉末冶金技术, 2000, 18(4): 292 doi: 10.3321/j.issn:1001-3784.2000.04.010
    [14] Ulf E, Han F L. Copper in P/M steels. Powder Metall Technol, 2012, 30(6): 460 doi: 10.3969/j.issn.1001-3784.2012.06.011

    Ulf Engström, 韩凤麟. 粉末冶金钢中的Cu. 粉末冶金技术, 2012, 30(6): 460 doi: 10.3969/j.issn.1001-3784.2012.06.011
    [15] Liu D J. Technological study of Fe–Cu–C sintered products. Powder Metall Ind, 2005, 15(3): 27 doi: 10.3969/j.issn.1006-6543.2005.03.007

    刘多俊. Fe–Cu–C烧结制品的工艺试验. 粉末冶金工业, 2005, 15(3): 27 doi: 10.3969/j.issn.1006-6543.2005.03.007
    [16] Kandavel T K, Chandramouli R, Ravichandran M. Experimental study on the plastic deformation and densification characteristics of some sintered and heat treated low alloy powder metallurgy steels. Mater Des, 2010, 31(1): 485
    [17] Ministry of Metallurgical Industry, People’ s Republic of China. YB/T 5128—1993 Steel—Determination of Continuous Cooling Transformation Diagram—Dilatometric Method. Beijing: Standards Press of China, 1994

    中华人民共和国冶金工业部. YB/T5128—1993钢的连续冷却转变曲线图的测定方法(膨胀法). 北京: 中国标准出版社, 1994
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  164
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回