真空热压超高碳超高铬模具钢研究

邱悦 林耀军 张覃轶 陈斐 张岳香

邱悦, 林耀军, 张覃轶, 陈斐, 张岳香. 真空热压超高碳超高铬模具钢研究[J]. 粉末冶金技术, 2021, 39(4): 297-303. doi: 10.19591/j.cnki.cn11-1974/tf.2019110007
引用本文: 邱悦, 林耀军, 张覃轶, 陈斐, 张岳香. 真空热压超高碳超高铬模具钢研究[J]. 粉末冶金技术, 2021, 39(4): 297-303. doi: 10.19591/j.cnki.cn11-1974/tf.2019110007
QIU Yue, LIN Yao-jun, ZHANG Qin-yi, CHEN Fei, ZHANG Yue-xiang. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303. doi: 10.19591/j.cnki.cn11-1974/tf.2019110007
Citation: QIU Yue, LIN Yao-jun, ZHANG Qin-yi, CHEN Fei, ZHANG Yue-xiang. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303. doi: 10.19591/j.cnki.cn11-1974/tf.2019110007

真空热压超高碳超高铬模具钢研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019110007
详细信息
    通讯作者:

    E-mail:yjlin@whut.edu.cn

  • 中图分类号: TG142.1

Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing

More Information
  • 摘要: 采用真空热压技术制备了含有超高碳和铬(2.6%C,26%Cr,质量分数)的模具钢。基于差示扫描量热分析曲线,选取两个远低于熔点的温度(1100 ℃和1150 ℃)进行热压,分别制造出几乎完全致密、粉末之间冶金结合良好的块体钢,密度为7.45~7.47 g∙cm−3;对应热压温度1100 ℃ 和1150 ℃,热压态钢中平均碳化物尺寸分别为3.5 μm和5.5 μm,最大碳化物尺寸分别为6.0 μm和8.5 μm。经1150 ℃淬火、500 ℃回火,1100 ℃ 和1150 ℃热压钢的平均硬度分别为HRC 62.6和HRC 60.8,平均三点弯曲强度分别为2060 MPa和1850 MPa;经1150 ℃淬火、550 ℃回火,1100 ℃ 和1150 ℃热压钢硬度分别为HRC 55.2和HRC 53.6,平均三点弯曲强度分别为2490 MPa和2320 MPa。在相同淬火和回火条件下,1100 ℃热压钢的三点弯曲强度较高,原因是淬火回火后钢中碳化物尺寸较小。
  • 图  1  粉末升温和降温的差示扫描量热分析曲线

    Figure  1.  DSC curves of the powders in the heating and cooling process

    图  2  粉末和热压态钢X射线衍射图谱

    Figure  2.  X-ray diffraction patterns of the powders and as-VHP steels

    图  3  原始粉末显微形貌:(a)低倍;(b)高倍

    Figure  3.  Microstructures of the raw powders: (a) lower magnification; (b) higher magnification

    图  4  Fe−Cr−C三元相图富Fe角的液相面投影图[14]

    Figure  4.  Liquidus projection at the Fe-rich corner of the Fe−Cr−C ternary phase diagram[14]

    图  5  热压态抛光面光学显微形貌:(a)1100 ℃;(b)1150 ℃

    Figure  5.  Optical microstructures of the polished surfaces of the as-VHP steels: (a) 1100 ℃; (b) 1150 ℃

    图  6  热压态试样显微组织形貌:(a)1100 ℃;(b)1150 ℃

    Figure  6.  Microstructures of the as-VHP steels: (a) 1100 ℃; (b) 1150 ℃

    图  7  淬火+回火态试样显微形貌:(a)1100 ℃热压,1150 ℃淬火,500 ℃回火;(b)1150 ℃ 热压,1150 ℃淬火,500 ℃回火;(c)1100 ℃热压,1150 ℃淬火,550 ℃回火;(d)1150 ℃热压,1150 ℃淬火,550 ℃回火

    Figure  7.  Microstructures of the as-VHP steels after quenching at 1150 ℃ and tempering: (a) VHP at 1100 ℃ and tempering at 500 ℃; (b) VHP at 1150 ℃ and tempering at 500 ℃; (c) VHP at 1100 ℃ and tempering at 550 ℃; (d) VHP at 1150 ℃ and tempering at 550 ℃

    图  8  热压块体钢1150 ℃淬火、500 ℃和550 ℃回火后的硬度

    Figure  8.  Hardness of the VHP steels after quenching at 1150 ℃ and tempering at 500 ℃和550 ℃

    图  9  热压钢1150 ℃淬火、500 ℃和550 ℃回火后的三点弯曲强度

    Figure  9.  Three-point bending strength of the VHP steels after quenching at 1150 ℃ and tempering at 500 ℃和550 ℃

    表  1  原料粉末化学成分(质量分数)

    Table  1.   Chemical composition of the raw powders %

    CCrVMoNbFe
    2.626.02.31.11.4余量
    下载: 导出CSV
  • [1] Ni X L, Zhang G Q, Zhang Y. Research progress of cold working die steel. Mater Sci Forum, 2013, 749: 145 doi: 10.4028/www.scientific.net/MSF.749.145
    [2] Qiu L, Wu X C. Development of cold work die steel at home and abroad. Die Mould Manuf, 2017, 17(11): 89 doi: 10.3969/j.issn.1671-3508.2017.11.026

    邱凌, 吴晓春. 国内外冷作模具钢发展概述. 模具制造, 2017, 17(11): 89 doi: 10.3969/j.issn.1671-3508.2017.11.026
    [3] Wang B. Development status of hot work die steel. Die Mould Manuf, 2017, 17(2): 79 doi: 10.3969/j.issn.1671-3508.2017.02.023

    王斌. 热作模具钢发展现状. 模具制造, 2017, 17(2): 79 doi: 10.3969/j.issn.1671-3508.2017.02.023
    [4] Zhou Z C, Du J, Yan Y J, et al. The recent development of study on H13 hot-work die steel. Solid State Phenom, 2018, 279: 55 doi: 10.4028/www.scientific.net/SSP.279.55
    [5] Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel. Engineering, 2019, 5(2): 319 doi: 10.1016/j.eng.2018.11.024
    [6] Zhang G H, Zhang Z C, Wu K M. Progress of research on composition design and heat treatment process of high carbon chromium bearing steel. Special Steel, 2015, 36(3): 9 doi: 10.3969/j.issn.1003-8620.2015.03.003

    张国宏, 张志成, 吴开明. 高碳铬轴承钢的成分设计和热处理工艺的研究进展. 特殊钢, 2015, 36(3): 9 doi: 10.3969/j.issn.1003-8620.2015.03.003
    [7] Zhao X L, Wang B, Sun D J, et al. Effect of pre-existing VC carbides on nitriding and wear behavior of hot-work die steel. Appl Surf Sci, 2019, 498: 179
    [8] Skela B, Sedlaček M, Kafexhiu F, et al. Wear behaviour and correlations to the microstructural characteristics of heat treated hot work tool steel. Wear, 2019, 426-427: 1118 doi: 10.1016/j.wear.2018.12.032
    [9] Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001

    吴文恒, 吴凯琦, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001
    [10] Zhang Q K, He Y H, Zhang H B, et al. The direct fabrication technology and mechanical properties of a new powder metallurgy high speed steel // China Heat Treatment Activity Week. Lanzhou, 2016: 322

    张乾坤, 贺跃辉, 张惠斌, 等. 新型近净成形粉末冶金高速钢的直接制备工艺及性能研究//中国热处理活动周.兰州, 2016: 322
    [11] Herbert D, Calderon R, Gierl C. Powder Metallurgy and Sintered Materials. Hoboken: Wiley-VCH Verlag GmbH & Co. KGaA, 2017
    [12] Micro-Melt WEAR 26 Datasheet. Metal Powders for Tool Steel Finished Products. Bridgeville: Carpenter Powder Products Inc, 2019
    [13] General Administration of Quality Supervision, Inspection and Quarantine. GB/T232−2010 Metallic Materials-Bend Test. Beijing: Standards Press of China, 2010

    中华人民共和国国家质量监督检验检疫总局. GB/T232−2010金属材料弯曲试验方法. 北京: 中国标准出版社, 2010
    [14] Zhang Q Y, Zhuang H S. Hand Book of Ternary Alloy Phase Diagrams. Beijing: China Machine Press, 2011

    张启运, 庄鸿寿. 三元合金相图手册. 北京: 机械工业出版社, 2011
    [15] Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater Sci Eng A, 2011, 528(18): 5696 doi: 10.1016/j.msea.2011.04.024
    [16] Ramesh G, Rahul R, Pradeep M, et al. Evolution of microstructure and mechanical properties of D2 tool steel during annealing heat treatment. Mater Today, 2018, 5(1): 2733
    [17] Roberts G, Krauss G, Kennedy R. Tool Steels. 5th Ed. Beachwood: American Society for Metals, 1998
    [18] Thelning, Erik K. Steel and its Heat Treatment. London: Butterworths, 1984
    [19] Shim D S, Lee K Y, Park S H. Bending strength of tool steel preheated to various temperatures and layered by direct energy deposition. Mater Sci Eng A, 2019, 744: 548 doi: 10.1016/j.msea.2018.12.009
    [20] Saastamoinen A, Kaijalainena A, Heikkala J, et al. The effect of tempering temperature on microstructure, mechanical properties and bendability of direct-quenched low-alloy strip steel. Mater Sci Eng A, 2018, 730: 284 doi: 10.1016/j.msea.2018.06.014
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  161
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回