超细SiC颗粒对球磨制备纳米晶AZ91镁合金组织及性能的影响

张素卿 苏倩 于欢 夏金环 马百常 庄海华 周吉学

张素卿, 苏倩, 于欢, 夏金环, 马百常, 庄海华, 周吉学. 超细SiC颗粒对球磨制备纳米晶AZ91镁合金组织及性能的影响[J]. 粉末冶金技术, 2021, 39(6): 512-519. doi: 10.19591/j.cnki.cn11-1974/tf.2019120003
引用本文: 张素卿, 苏倩, 于欢, 夏金环, 马百常, 庄海华, 周吉学. 超细SiC颗粒对球磨制备纳米晶AZ91镁合金组织及性能的影响[J]. 粉末冶金技术, 2021, 39(6): 512-519. doi: 10.19591/j.cnki.cn11-1974/tf.2019120003
ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. doi: 10.19591/j.cnki.cn11-1974/tf.2019120003
Citation: ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. doi: 10.19591/j.cnki.cn11-1974/tf.2019120003

超细SiC颗粒对球磨制备纳米晶AZ91镁合金组织及性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019120003
基金项目: 国家自然科学基金资助项目(51804190);山东省自然科学基金资助项目(ZR2017LEM001)
详细信息
    通讯作者:

    E-mail: susan8401@163.com

  • 中图分类号: TG146.2

Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys

More Information
  • 摘要: 通过机械球磨制备了SiC颗粒(SiCp)增强镁基复合材料粉末(AZ91‒xSiCpx=5%、10%、15%,体积分数),实现了镁基体纳米化及亚微米级SiCp在镁基体中的均匀弥散分布,研究了SiCp对球磨后粉末微观组织的影响规律。结果表明,SiCp第二相的引入能够促进机械球磨过程中镁基体晶粒的细化,晶粒细化程度随SiCp体积分数的增加有所加强,同时SiCp含量的提高对Al元素在镁基体中的固溶及其自身颗粒的细化起到抑制作用。球磨后AZ91‒xSiCpx=5%、10%、15%)复合粉末的硬度分别为HV 166、HV 175和HV 185,强化机制为细晶强化、弥散强化、固溶强化和承载强化,计算得到AZ91‒5%SiCp复合粉末不同强化机制所引起的强化效果占比分别为86.9%、7.4%、1.8%和3.8%。
  • 图  1  商用AZ91镁合金显微组织和成分分析:(a)光学显微形貌;(b)和(c)扫描电子显微形貌;(d)~(f)图1(c)中A、B、C位置处能谱分析

    Figure  1.  Microstructure and composition of the commercial AZ91 magnesium alloys: (a) OM image; (b) and (c) SEM images; (d)~(f) EDS analysis of points A, B, and C in Fig. 1(c)

    图  2  初始粉末形貌:(a)SiCp粉末;(b)AZ91镁合金粉末

    Figure  2.  Morphology of the initial powders: (a) SiCp; (b) AZ91 magnesium alloys

    图  3  球磨后AZ91‒xSiCpx=5%、10%、15%,体积分数)复合粉末显微形貌及SiCp尺寸分布:(a)AZ91‒5%SiCp复合粉末显微形貌;(b)AZ91‒5%SiCp复合粉末中SiCp尺寸分布;(c)AZ91‒10%SiCp复合粉末显微形貌;(d);AZ91‒10%SiCp复合粉末中SiCp尺寸分布;(e)AZ91‒15%SiCp复合粉末显微形貌;(e);AZ91‒15%SiCp复合粉末中SiCp尺寸分布

    Figure  3.  SEM image and SiC particle size distribution of the milled AZ91‒xSiCp (x=5%, 10%, 15%, volume fraction) composite powders: (a) SEM image of the milled AZ91‒5%SiCp composite powders; (b) SiC particle size distribution of the milled AZ91‒5%SiCp composite powders; (c) SEM image of the milled AZ91‒10%SiCp composite powders; (d) SiC particle size distribution of the milled AZ91‒10%SiCp composite powders; (e) SEM image of the milled AZ91‒15%SiCp composite powders; (f) SiC particle size distribution of the milled AZ91‒15%SiCp composite powders;

    图  4  球磨前后AZ91镁合金及复合粉末X射线衍射图谱

    Figure  4.  X-ray diffraction patterns of the AZ91 magnesium alloys and the composite powders before and after milling

    图  5  球磨后AZ91镁合金及复合粉末镁基体晶粒尺寸

    Figure  5.  Grain sizes of the AZ91 magnesium alloys and the magnesium matrix in the composite powders after milling

    图  6  球磨前后AZ91镁合金及复合粉末镁相的晶格常数

    Figure  6.  Lattice parameters of the magnesium phase in the AZ91 magnesium alloys and the composite powders before and after milling

    图  7  球磨前后AZ91镁合金及复合粉末的硬度

    Figure  7.  Hardness of the AZ91 magnesium alloys and the composite powders before and after milling

  • [1] Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science, 2018, 359(6374): 447 doi: 10.1126/science.aap8716
    [2] Zhang W, Mao J, Li S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc, 2017, 139(9): 3316 doi: 10.1021/jacs.6b12185
    [3] Pan H, Qin G, Huang Y, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater, 2018, 149: 350 doi: 10.1016/j.actamat.2018.03.002
    [4] Suh B, Shim M, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here? Scr Mater, 2014, 84-85: 1
    [5] Mordike B L, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A, 2001, 302(1): 37 doi: 10.1016/S0921-5093(00)01351-4
    [6] Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater, 2014, 81: 83 doi: 10.1016/j.actamat.2014.08.023
    [7] Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373

    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al‒7Si‒0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373
    [8] Sun W T, Qiao X G, Zheng M Y, et al. Altered ageing behaviour of a nanostructured Mg‒8.2Gd‒3.8Y‒1.0Zn‒0.4Zr alloy processed by high pressure torsion. Acta Mater, 2018, 151: 260
    [9] Wang X, Wang H, Hu L X, et al. Nanocrystalline Mg and Mg alloy powders by hydriding-dehydriding processing. Trans Nonferrous Met Soc China, 2010, 20(7): 1326 doi: 10.1016/S1003-6326(09)60299-5
    [10] Yu H, Sun Y, Hu L X, et al. Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates. Mater Charact, 2017, 127: 272 doi: 10.1016/j.matchar.2017.03.017
    [11] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1-2): 1 doi: 10.1016/S0079-6425(99)00010-9
    [12] Medina J, Pérez P, Garcés G, et al. High-strength Mg‒6Zn‒1Y‒1Ca (wt%) alloy containing quasicrystalline I-phase processed by a powder metallurgy route. Mater Sci Eng A, 2018, 715: 92 doi: 10.1016/j.msea.2017.12.111
    [13] Chen Q, Meng Y, Yi Y, et al. Microstructure and mechanical properties of cup-shaped parts of 15% SiCp reinforced AZ91 magnesium matrix composite processed by thixoforging. J Alloys Compd, 2019, 774: 93 doi: 10.1016/j.jallcom.2018.09.345
    [14] Penther D, Ghasemi A, Riedel R, et al. Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg‒SiC nanocomposites produced by mechanical milling and hot extrusion. Mater Sci Eng A, 2018, 738: 264 doi: 10.1016/j.msea.2018.09.106
    [15] Chen L, Xu J, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528(7583): 539 doi: 10.1038/nature16445
    [16] Nikmardan S, Pouyafar V. Fabrication of AZ91D/SiCp composites by mechanical milling of magnesium alloy chips and spark plasma sintering in a semi-solid regime. J Asian Ceram Soc, 2019, 7(2): 154 doi: 10.1080/21870764.2019.1595928
    [17] Farzami M, Farahani M, Akbari D, et al. Friction stir weld of AZ91 magnesium alloy with and without nano-SiC particle. JOM, 2019, 71(11): 4171 doi: 10.1007/s11837-019-03764-6
    [18] Yi Y, Meng Y, Li D, et al. Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%. J Mater Sci Technol, 2018, 34(7): 1149 doi: 10.1016/j.jmst.2017.11.044
    [19] Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315

    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315
    [20] Wu C, Sun A Z, Liu Y S, et al. Preparation and properties of nano-SiC particle reinforced Al–Mg composite. Powder Metall Technol, 2017, 35(3): 182

    吴超, 孙爱芝, 刘永生, 等. 纳米SiC颗粒增强铝镁复合材料的制备与性能研究. 粉末冶金技术, 2017, 35(3): 182
    [21] Ramkumar T, Selvakumar M, Vasanthsankar R, et al. Rietveld refinement of powder X-ray diffraction, microstructural and mechanical studies of magnesium matrix composites processed by high energy ball milling. J Magn Alloy, 2018, 6(4): 390 doi: 10.1016/j.jma.2018.08.002
    [22] Kamrani S, Hübler D, Ghasemi A, et al. Enhanced strength and ductility in magnesium matrix composites reinforced by a high volume fraction of nano- and submicron-sized SiC particles produced by mechanical milling and hot extrusion. Materials, 2019, 12(20): 3445 doi: 10.3390/ma12203445
    [23] Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater, 2009, 117(1-2): 75 doi: 10.1016/j.micromeso.2008.06.010
    [24] Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact, 2007, 58(10): 883 doi: 10.1016/j.matchar.2006.09.002
    [25] Williamson G K, Hall W H. X-ray line broadening from field aluminum and wolfram. Acta Metall, 1953, 1(1): 22 doi: 10.1016/0001-6160(53)90006-6
    [26] Chen L, Peng J, Xu J, et al. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater, 2013, 69(8): 634 doi: 10.1016/j.scriptamat.2013.07.016
    [27] Hassan S F, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A, 2005, 392(1-2): 163 doi: 10.1016/j.msea.2004.09.047
    [28] Feng J, Sun H, Li X, et al. Microstructures and mechanical properties of the ultrafine-grained Mg‒3Al‒Zn alloys fabricated by powder metallurgy. Adv Powder Technol, 2016, 27(2): 550 doi: 10.1016/j.apt.2016.02.008
    [29] Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng A, 2011, 529: 62 doi: 10.1016/j.msea.2011.08.061
  • 加载中
图(7)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  137
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-01
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回