电极感应气雾化法制备新型高硬度马氏体铁基合金粉末

刘艳 尤齐燊 朱红梅 张林杰 张建勋

刘艳, 尤齐燊, 朱红梅, 张林杰, 张建勋. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末[J]. 粉末冶金技术, 2021, 39(6): 537-544. doi: 10.19591/j.cnki.cn11-1974/tf.2019120013
引用本文: 刘艳, 尤齐燊, 朱红梅, 张林杰, 张建勋. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末[J]. 粉末冶金技术, 2021, 39(6): 537-544. doi: 10.19591/j.cnki.cn11-1974/tf.2019120013
LIU Yan, YOU Qi-shen, ZHU Hong-mei, ZHANG Lin-jie, ZHANG Jian-xun. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization[J]. Powder Metallurgy Technology, 2021, 39(6): 537-544. doi: 10.19591/j.cnki.cn11-1974/tf.2019120013
Citation: LIU Yan, YOU Qi-shen, ZHU Hong-mei, ZHANG Lin-jie, ZHANG Jian-xun. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization[J]. Powder Metallurgy Technology, 2021, 39(6): 537-544. doi: 10.19591/j.cnki.cn11-1974/tf.2019120013

电极感应气雾化法制备新型高硬度马氏体铁基合金粉末

doi: 10.19591/j.cnki.cn11-1974/tf.2019120013
基金项目: 国家重点研发计划资助项目(2018YFB1105800)
详细信息
    通讯作者:

    E-mail: jxzhang@mail.xjtu.edu.cn

  • 中图分类号: TF123.1

Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization

More Information
  • 摘要: 利用正交试验研究了电极感应气雾化(electrode induction gas atomization,EIGA)制粉工艺参数(雾化压力、雾化气体温度和熔炼功率)对新型高硬度马氏体铁基合金粉末粒径分布、粉末流动性和收得率的影响规律。结果表明,粉末粒径分布及其特征主要取决于雾化压力,粉末流动性及收得率主要受雾化压力及雾化气体温度的影响。当制粉工艺参数为雾化压力1.5 MPa、熔炼功率15 kW、雾化气体温度40 ℃时,所得粉末的收得率最高,粒径大小在53~180 μm之间的粉末质量占比高达68.24%,兼具较好的粉末流动性及粉末粒度分布标准偏差,粉末形貌最佳。
  • 图  1  电极感应气雾化制粉示意图(a)和工作原理(b)

    Figure  1.  Schematic diagram (a) and principle (b) of EIGA

    图  2  正交试验各参数下的粉末粒径分布特征:(a)工艺1#;(b)工艺2#;(c)工艺3#;(d)工艺4#;(e)工艺5#;(f)工艺6#;(g)工艺7#;(h)工艺8#;(i)工艺9#

    Figure  2.  Particle size distribution characteristics under the different orthogonal test parameters: (a) process 1#; (b) process 2#; (c) process 3#; (d) process 4#; (e) process 5#; (f) process 6#; (g) process 7#; (h) process 8#; (i) process 9#

    图  3  不同工艺条件制备的粉末形貌特征:(a)工艺4#;(b)工艺8#;(c)工艺3#;(d)工艺1#

    Figure  3.  Particle morphology of the powders prepared in the different gas atomization parameters: (a) process 4#; (b) process 8#; (c) process 3#; (d) process 1#

    图  4  雾化压力对粉末性能影响的极差分析

    Figure  4.  Range analysis of the atomization pressure on the powder properties

    图  5  熔炼功率对粉末性能影响的极差分析

    Figure  5.  Range analysis of the melting power on the powder properties

    图  6  雾化气体温度对粉末性能影响的极差分析

    Figure  6.  Range analysis of the gas temperature on the powder properties

    图  7  高硬度铁基合金粉末X射线衍射图谱

    Figure  7.  X-ray diffraction patterns of the high hardness iron-based alloy powders

    图  8  高硬度铁基合金粉末粒子截面整体组织形貌:(a)和局部放大图((b)和(c))

    Figure  8.  Microstructure (a) and the enlarged morphology ((b) and (c)) in the cross section of the high hardness iron-based alloy powders

    表  1  高硬度马氏体铁基合金棒化学成份(质量分数)

    Table  1.   Chemical composition of the high hardness martensitic iron-based alloy %

    CNiCrSiBVPSFe
    0.12~0.201.5~2.816~170.5~1.00.4~1.00.1~0.3≤0.03≤0.03余量
    下载: 导出CSV

    表  2  气雾化工艺正交实验表L9(3×3)

    Table  2.   Orthogonal test of the gas atomization parameters L9 (3×3)

    工艺F / MPaP / kWT / ℃
    1#1.01520
    2#1.02040
    3#1.02560
    4#1.51540
    5#1.52060
    6#1.52520
    7#2.01560
    8#2.02020
    9#2.02540
    下载: 导出CSV

    表  3  粉末粒径分布特征值、流速及粉末收得率

    Table  3.   Characteristic values of the particle size distribution, flow rate, and yield of powders

    工艺D50 / μmD84.13 / μmδS / [s·(50 g)−1]w / %
    1#99.80±0.31166.00±0.321.6712.75±0.2158.41±0.38
    2#101.00±0.40165.00±0.351.6312.94±0.1365.32±0.32
    3#99.30±0.37164.00±0.311.6512.82±0.2152.58±0.35
    4#91.90±0.45161.00±0.241.7513.40±0.2468.24±0.40
    5#93.00±0.30159.00±0.291.7113.20±0.1956.94±0.22
    6#91.70±0.28159.00±0.211.7312.75±0.1865.41±0.27
    7#87.70±0.21142.00±0.221.6213.66±0.2255.13±0.29
    8#88.10±0.24142.00±0.191.6113.00±0.2350.38±0.23
    9#87.00±0.37149.00±0.251.7114.10±0.1250.12±0.29
    下载: 导出CSV

    表  4  各影响因素显著性分析结果

    Table  4.   Significance analysis based on the various factors

    粉末性能F / MPaP / kWT / ℃
    D5012.431.360.13
    δ0.100.050.04
    S0.750.220.65
    w12.654.556.35
    下载: 导出CSV

    表  5  制备的高硬度铁基合金粉末化学成份(质量分数)

    Table  5.   Chemical composition of the high hardness iron-based alloys %

    CNiCrSiBVPSFe
    0.122.4616.870.770.640.220.0190.0032余量
    下载: 导出CSV
  • [1] Zhu S, Zhou C J. Additive remanufacturing for “Made in China 2025”. Therm Spray Technol, 2016, 8(3): 1

    朱胜, 周超极. 面向“中国制造2025”的增材再制造技术. 热喷涂技术, 2016, 8(3): 1
    [2] Strondl A, Lyckfeldt O, Brodin H, et al. Characterization and control of powder properties for additive manufacturing. JOM, 2015, 67(3): 549 doi: 10.1007/s11837-015-1304-0
    [3] Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium-past, present, and future. Int Mater Rev, 2017, 63(7): 407
    [4] Wang Q, Li S G, Lü H, et al. Research on high quality titanium alloy powder production by atomization technology. Titanium Ind Prog, 2010, 27(5): 17

    王琪, 李圣刚, 吕宏, 等. 雾化法制备高品质钛合金粉末技术研究. 钛工业进展, 2010, 27(5): 17
    [5] Ouyang H W, Chen X, Yu W T, et al. Progress and prospect on the gas atomization. Powder Metall Technol, 2007, 25(1): 53 doi: 10.3321/j.issn:1001-3784.2007.01.013

    欧阳鸿武, 陈欣, 余文焘, 等. 气雾化制粉技术发展历程及展望. 粉末冶金技术, 2007, 25(1): 53 doi: 10.3321/j.issn:1001-3784.2007.01.013
    [6] Xu L H, Zhou X L, Li J H. The study progress of metal powder gas atomization technology. Therm Spray Technol, 2008, 10(2): 1

    徐良辉, 周香林, 李景昊. 金属粉末气雾化技术研究新进展. 热喷涂技术, 2008, 10(2): 1
    [7] Hu Y F, Li J H, Zhou X L. Research progress on solidification behavior of alloy droplets during the process of atomization. Therm Spray Technol, 2008, 10(1): 1

    胡云飞, 李景昊, 周香林. 气雾化过程中合金熔滴的凝固行为研究进展. 热喷涂技术, 2008, 10(1): 1
    [8] Chen S Q, Huang B Y. The status and development of gas atomization for production of metal powders. Powder Metall Technol, 2004, 22(5): 297 doi: 10.3321/j.issn:1001-3784.2004.05.009

    陈仕奇, 黄伯云. 金属粉末气体雾化制备技术的研究现状与进展. 粉末冶金技术, 2004, 22(5): 297 doi: 10.3321/j.issn:1001-3784.2004.05.009
    [9] Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powder used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001

    吴文恒, 吴凯琦, 肖逸凡, 等. 雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001
    [10] Dowson A G. Atomization dominates powder production. Met Powder Rep, 1999, 54(1): 15 doi: 10.1016/S0026-0657(99)80162-3
    [11] Zhang S G, Yang B C, Yang B, et al. A novel ultrasonic atomization process for producing spherical metal powder. Acta Metall Sin, 2002, 38(8): 888 doi: 10.3321/j.issn:0412-1961.2002.08.022

    张曙光, 杨必成, 杨博, 等. 新型超声雾化技术制备球形金属粉末. 金属学报, 2002, 38(8): 888 doi: 10.3321/j.issn:0412-1961.2002.08.022
    [12] Yuan G. Preparation, Characterization and Application of Spherical Metal Powder for Additive Manufacturing [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2015

    原光. 面向增材制造的球形金属粉的制备、表征与应用[学位论文]. 南京: 南京理工大学, 2015
    [13] Guo K K, Liu C S, Chen S Y, et al. Effect of EIGA power parameter on the characteristics of TC4 alloy powder for 3D printing. Mater Sci Technol, 2017, 25(1): 16 doi: 10.11951/j.issn.1005-0299.20160377

    郭快快, 刘常升, 陈岁元, 等. 功率对EIGA制备3D打印用TC4合金粉末特性的影响. 材料科学与工艺, 2017, 25(1): 16 doi: 10.11951/j.issn.1005-0299.20160377
    [14] Yang M. Research on Microstructure Evolution and Formation of Fe−C Based Powders by Gas Atomization [Dissertation]. Shanghai: Shanghai University, 2010

    杨敏. 气雾化铁−碳系合金粉体组织演化及其形成研究[学位论文]. 上海: 上海大学, 2010
    [15] German R M. Powder Metallurgy Science. Princeton NJ: Metal Powder Industries Federation, 1994
    [16] Lubanska H. Correlation of spray ring data for gas atomization of liquid metals. JOM, 1970, 22(2): 45 doi: 10.1007/BF03355938
    [17] Tan M H, Huang Y Y. Surface Physical Chemistry. Beijing: China Building Industry Press, 1985

    谈慕华, 黄蕴元. 表面物理化学. 北京: 中国建筑工业出版社, 1985
    [18] Long Q L, Wu W H, Lu L, et al. Effect of power on properties of Ti−6Al−4V alloy powder prepared by EIGA process. China Powder Sci Technol, 2018, 24(4): 49

    龙倩蕾, 吴文恒, 卢林, 等. 熔炼功率对 EIGA 制备 Ti−6Al−4V 合金粉末特性的影响. 中国粉体技术, 2018, 24(4): 49
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  300
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回