基于离散元的不同粒径配比粉末压制相对密度与力链分析

王海陆 刘军 林立 张超 张璐栋 柯建忠 李化蓥

王海陆, 刘军, 林立, 张超, 张璐栋, 柯建忠, 李化蓥. 基于离散元的不同粒径配比粉末压制相对密度与力链分析[J]. 粉末冶金技术, 2021, 39(6): 490-498. doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
引用本文: 王海陆, 刘军, 林立, 张超, 张璐栋, 柯建忠, 李化蓥. 基于离散元的不同粒径配比粉末压制相对密度与力链分析[J]. 粉末冶金技术, 2021, 39(6): 490-498. doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
Citation: WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. doi: 10.19591/j.cnki.cn11-1974/tf.2019120014

基于离散元的不同粒径配比粉末压制相对密度与力链分析

doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
基金项目: 国家自然科学基金资助项目(11372148)
详细信息
    通讯作者:

    E-mail: liujun@nbu.edu.cn

  • 中图分类号: TF122

Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element

More Information
  • 摘要: 利用PFC三维数值模拟软件,通过改变粉末颗粒粒径分布建立各组冷压模型,得到压制过程中相对密度变化规律与力链分布情况。在特定粉末粒径配比下,能够得到相对密度最高的压坯。结果表明:在大、中、小粒径颗粒质量比为60:15:25的粒径配比下,压坯相对密度最高,压坯相对密度并不会随着细粉比例不断增加而一直提高;在压制过程中,随着附加细粉占比上升,压制方向上能产生更大应变。侧压系数与泊松比受粉末粒径分布影响较小,且在压制后期,在压坯已获得较高相对密度的情况下,会因缺乏足够的驱动力与位移空间发生下降;混合粒径粉末试样的力链数量远大于单一粒径粉末试样,在强力链数目充足的前提下,结合大量的弱力链能获得更高的压坯相对密度。
  • 图  1  接触模型中接触单元关系:(a)球-球类型;(b)球-墙类型

    Figure  1.  Relationship of the contact unit in the contact model: (a) ball-ball type; (b) ball-facet type

    图  2  动态测量球分布图:(a)初始测量球俯视图;(b)初始测量球正视图;(c)压制后测量球俯视图;(d)压制后测量球正视图

    Figure  2.  Distribution of the dynamic measuring ball: (a) top view of the initial measuring ball; (b) front view of the initial measuring ball; (c) top view of the measuring ball after pressing; (d) front view of the measuring ball after pressing

    图  3  不同粒径分布的颗粒群模型

    Figure  3.  Particle model in different particle size distribution

    图  4  轴向应力‒应变与孔隙率关系图

    Figure  4.  Relationship of the axial stress‒strain and porosity

    图  5  各组粉末压制模型:(a)N组压制前;(b)N组压制后;(c)A组压制前;(d)A组压制后;(e)B组压制前;(f)B组压制后;(g)C组压制前;(h)C组压制后;(i)D组压制前;(j)D组压制后;(k)E组压制前;(l)E组压制后

    Figure  5.  Each group of powder pressing model: (a) before N group suppression; (b) after N group suppression; (c) before A group suppression; (d) after A group suppression; (e) before B group suppression; (f) after B group suppression; (g) before C group suppression; (h) after C group suppression; (i) before D group suppression; (j) after D group suppression; (k) before E group suppression; (l) after E group suppression

    图  6  各组粉末孔隙率

    Figure  6.  Powder porosity of each group

    图  7  压坯受力示意图

    Figure  7.  Schematic diagram of the pressing force

    图  8  各组试样轴向压制力变化

    Figure  8.  Axial pressing force of the samples for each group

    图  9  各组粉末侧压系数

    Figure  9.  Lateral pressure coefficient of the powders for each group

    图  10  各组粉末泊松比

    Figure  10.  Poisson's ratio of the powders for each group

    图  11  各组粉末试样力链分布:(a)N组;(b)A组;(c)B组;(d)C组;(e)D组;(f)E组

    Figure  11.  Force chain distribution of the powders for each group: (a) group N; (b) group A; (c) group B; (d) group C; (e) group D; (f) group E

    表  1  工业标准筛

    Table  1.   Industrial standard screen

    目数筛网孔径 / μm粒径 / μm
    +80+180≥180
    −80~+100−180~+150150~180
    −100~+150−150~+106106~150
    −150~+200−106~+7575~106
    −200~+250−75~+6363~75
    −250~+325−63~+4545~63
    −325−45≤45
    下载: 导出CSV

    表  2  各标准粒径分布对比

    Table  2.   Comparison of the standard particle size distributions

    牌号压缩性 / (g·cm‒3)粒径分布(质量分数) / %
    >250 μm>180 μm>150 μm>75 μm>63 μm>45 μm<45 μm
    FHY100·270≥6.7000310~30
    300NH≥7.0511515605~208~2310~30
    HAP100.30H≥7.1001106020~4030~45
    ABC100.30≥7.28#0*10***20
    FSW 100·30H7.15#011015~30
    注:“—”表示不作具体要求;“*”表示参数保密;压缩性的单位压制压力除特别标注“#”为600 MPa外,其余均为500 MPa。
    下载: 导出CSV

    表  3  200目纯铁粉试样粉末粒径分布(质量分数)

    Table  3.   Particle size distribution of the pure iron powder samples in 200 mesh %

    >150 μm>106 μm>75 μm>45 μm<45 μm
    05154040
    下载: 导出CSV

    表  4  铁粉相关参数

    Table  4.   Related parameters of Fe powder

    材料密度 /
    (kg·m−3)
    弹性模量 /
    GPa
    法向切向
    刚度比
    摩擦系数
    铁粉78001900.7850.3
    下载: 导出CSV

    表  5  各组试样粉末粒径分布

    Table  5.   Particle size distribution of the samples

    试样编号粒径分布(质量分数) / %
    >150 μm106~150 μm45~106 μm<45 μm
    N010000
    A0603010
    B0602515
    C0602020
    D0601525
    E0601030
    下载: 导出CSV

    表  6  各粒径颗粒数目

    Table  6.   Number of the particles in each size

    试样编号粒径分布(个数)
    150 μm106 μm45 μm总数
    N180760018076
    A10822156266892395371
    B1082213073103432127327
    C1082210497137742159061
    D108227897172301191020
    E108225275206605222702
    下载: 导出CSV

    表  7  各组粉末孔隙率

    Table  7.   Powder porosity of each group

    试样编号孔隙率 / %
    初始最终减少缩小比
    N组55.0030.0025.000.45
    A组55.0024.2530.750.56
    B组55.0021.6133.390.61
    C组55.0019.9835.020.64
    D组55.0018.0836.920.67
    E组55.0018.6336.370.66
    下载: 导出CSV

    表  8  各组粉末试样力链数目与强度

    Table  8.   Number and strength of force chain distribution of the powders for each group

    试样组力链数目强度范围 / MPa
    N674532.0561×10−2~1.5216×103
    A2887691.8707×10−4~1.3296×103
    B4161073.0393×10−4~1.3683×103
    C5491725.7130×10−4~1.4514×103
    D7047645.1223×10−4~1.4251×103
    E8156485.0515×10−4~1.3222×103
    下载: 导出CSV
  • [1] Huang P Y. Theory of Power Metallurgy. 1st Ed. Beijing: Metallurgical Industry Press, 1982

    黄培云. 粉末冶金原理. 1版. 北京: 冶金工业出版社, 1982
    [2] Amherd Hidalgo A, Frykholm R, Ebel T, et al. Powder metallurgy strategies to improve properties and processing of titanium alloys: A review. Adv Eng Mater, 2017, 19(6): 1600743 doi: 10.1002/adem.201600743
    [3] Lang L H, Wang G, Huang X N, et al. Effect of powder size on microstructure and properties of 2A12 aluminium alloy prepared by hot isostatic pressing. Mater Sci Eng Powder Metall, 2016, 21(1): 85 doi: 10.3969/j.issn.1673-0224.2016.01.012

    郎利辉, 王刚, 黄西娜, 等. 粉末粒度对热等静压法制备2A12铝合金组织与性能的影响. 粉末冶金材料科学与工程, 2016, 21(1): 85 doi: 10.3969/j.issn.1673-0224.2016.01.012
    [4] Lin L, Liu J, Zhou C, et al. Optimization analysis of die mass and particle model in metal powder impact compaction. Powder Metall Technol, 2018, 36(3): 182

    林立, 刘军, 周纯, 等. 金属粉末冲击压制过程中冲模质量及颗粒模型的优化分析. 粉末冶金技术, 2018, 36(3): 182
    [5] Ding Y C, Yin H, Jiang Z L. Preparation technology and research progress of iron-based composite. Hot Working Technol, 2013, 42(24): 22

    丁义超, 尹红, 姜自莲. 铁基复合材料的制备技术与研究进展. 热加工工艺, 2013, 42(24): 22
    [6] Geng X W, Zhao H B, Fan Z J. Study of ferrous matrix composites. China Sci Technol Inf, 2009(6): 34

    耿学文, 赵洪波, 樊振军. 铁基复合材料的研究进展综述. 中国科技信息, 2009(6): 34
    [7] Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98

    张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98
    [8] Skrinjar O, Larsson P L. On discrete element modelling of compaction of powders with size ratio. Comput Mater Sci, 2004, 31(1-2): 131 doi: 10.1016/j.commatsci.2004.02.005
    [9] Ye X Y, Liu J L, Xu H, et al. Effects of powder size and molding pressure on structural characterization of 316L stainless steel porous material. Mater Sci Eng Powder Metall, 2013, 18(3): 409 doi: 10.3969/j.issn.1673-0224.2013.03.017

    叶先勇, 刘京雷, 徐宏, 等. 粉末粒径和压制压力对316L不锈钢多孔材料结构特性的影响. 粉末冶金材料科学与工程, 2013, 18(3): 409 doi: 10.3969/j.issn.1673-0224.2013.03.017
    [10] Zhu P C. Effects of the Powder Size and Preparation Process on the Performance of Sintered NdFeB [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2012

    朱鹏程. 粉末粒度与制备工艺对烧结钕铁硼性能的影响[学位论文]. 南京: 南京理工大学, 2012
    [11] Yan Z Q, Chen F, Cai Y X. High velocity compaction behavior and sintered properties of Ti powders with different particle sizes. Acta Metall Sin, 2012, 48(3): 379 doi: 10.3724/SP.J.1037.2011.00612

    闫志巧, 陈峰, 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能. 金属学报, 2012, 48(3): 379 doi: 10.3724/SP.J.1037.2011.00612
    [12] Yan Z Q, Chen F, Cai Y, et al. Influence of particle size on property of Ti‒6Al‒4V alloy prepared by high-velocity compaction. Trans Nonferrous Met Soc China, 2013, 23(2): 361 doi: 10.1016/S1003-6326(13)62470-X
    [13] Yang Z C. Effect of particle size distribution on the formation of the microstructure of sintered NdFeB. Shanxi Metall, 2014, 37(5): 11 doi: 10.3969/j.issn.1672-1152.2014.05.004

    杨志超. 粉末粒度分布对烧结钕铁硼微观结构形成的影响. 山西冶金, 2014, 37(5): 11 doi: 10.3969/j.issn.1672-1152.2014.05.004
    [14] Pan S Y, Dai W J, Zhou Z H, et al. Simulation study on size distribution evolution of powder particles in liquid phase sintering. Powder Metall Technol, 2018, 36(6): 409

    潘诗琰, 代文杰, 周子豪, 等. 液相烧结过程中粉末粒径分布演化模拟研究. 粉末冶金技术, 2018, 36(6): 409
    [15] Cundall P A, Strack O D L. Discussion: A discrete numerical model for granular assemblies. Géotechnique, 1980, 30(3): 331
    [16] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 1480-2012 Metal Powder Dry Screening Method. Beijing: China Standard Press, 2013

    中华人民共和国国家质量监督检验检疫总局. GB/T 1480-2012金属粉末干筛分法测定粒度. 北京: 中国标准出版社, 2013
    [17] Japanese Industrial Standards Committee. JIS Z 2510-2004 Metallic Powders—Determination of Particle Size by Dry Sieving. Tokyo: Japan Marine Standard Association, 2004
    [18] Ministry of Industry and Information Technology of the People's Republic of China. YB/T 5308-2011 Reduction Iron Powder for Powder Metallurgy. Beijing: Metallurgical Industry Press, 2012

    中华人民共和国工业和信息化部. YB/T 5308-2011粉末冶金用还原铁粉. 北京: 冶金工业出版社, 2012
    [19] National Pig Iron and Ferroalloy Standardization Technical Committee. 20153628-T-602 Water Atomized Pure Iron Powder for Powder Metallurgy, Specification for the Preparation of National Standards for Alloy Iron Powder. Beijing: China Standard Press, 2015

    全国生铁及铁合金标准化技术委员会. 20153628-T-602粉末冶金用水雾化纯铁粉、合金铁粉国家标准编制说明. 北京: 中国标准出版, 2015
    [20] State Administration of Market Regulation. GB/T 19734-2018 Water Atomized Pure Iron Powder, Alloy Steel Powder for Powder Metallurgy. Beijing: China Standard Press, 2018

    国家市场监督管理总局. GB/T 19734-2018粉末冶金用水雾化纯铁粉、合金钢粉. 北京: 中国标准出版社, 2018
    [21] Hu X P. Analysis on the Influential Factors of Metal Particle Contact Process under High Speed Loading [Dissertation]. Ningbo: Ningbo University, 2016

    胡仙平. 高速加载下金属颗粒接触过程的影响因素分析[学位论文]. 宁波: 宁波大学, 2016
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  126
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回