CoCrFeNiCuTix高熵合金的微观组织与耐腐蚀性能研究

苗振旺 祝夫文 刘琪

苗振旺, 祝夫文, 刘琪. CoCrFeNiCuTix高熵合金的微观组织与耐腐蚀性能研究[J]. 粉末冶金技术, 2020, 38(1): 10-17. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
引用本文: 苗振旺, 祝夫文, 刘琪. CoCrFeNiCuTix高熵合金的微观组织与耐腐蚀性能研究[J]. 粉末冶金技术, 2020, 38(1): 10-17. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
Citation: MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.002

CoCrFeNiCuTix高熵合金的微观组织与耐腐蚀性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
详细信息
    通讯作者:

    刘琪, E-mail: modieer_67@ahpu.edu.cn

  • 中图分类号: TG172.6;TG135.1

Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy

More Information
  • 摘要: 采用真空热压烧结法制备了CoCrFeNiCuTix (x为摩尔比, x=0.25, 0.50, 0.75, 1.00)六元高熵合金, 研究了Ti含量对该高熵合金微观组织和耐腐蚀性的影响。利用金相显微镜、X射线衍射仪、扫描电子显微镜、HVS-1000B型数显显微硬度计和电化学工作站等设备测试和分析了CoCrFeNiCuTix高熵合金的组织结构和耐腐蚀性能。结果表明: 不同Ti含量(摩尔分数)的CoCrFeNiCuTix高熵合金, 物相都为面心立方结构, 组织主要为树枝晶; 随着Ti摩尔分数的增加, 高熵合金树枝晶组织减少, 硬度先增加后减小, x=0.50时, 合金的硬度值最大, 为HV 755;CoCrFeNiCuTix高熵合金的自腐蚀电位都正于45#钢, 耐腐蚀性先增强后减弱, x=0.50时, 其耐腐蚀性最优。
  • 图  1  CoCrFeNiCuTix高熵合金(x为摩尔比,x=0.25, 0.50, 0.75, 1.00)X射线衍射图

    Figure  1.  XRD patterns of Co Cr FeNiCuTix high-entropy alloy(x=0.25, 0.50, 0.75, 1.00 by molar)

    图  2  CoCrFeNiCuTix高熵合金试样金相组织:(a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    Figure  2.  Metallographic structures of CoCrFeNiCuTix high-entropy alloys: (a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    图  3  不同放大倍数Co Cr Fe Ni Cu Tix高熵合金的扫描电子显微形貌:(a)、(b)x=0.25;(c)、(d)x=0.50;(e)、(f)x=0.75;(g)、(h)x=1.00

    Figure  3.  SEM morphology of CoCrFeNiCuTix high-entropy alloy: (a), (b)x=0.25;(c), (d)x=0.50;(e), (f)x=0.75;(g), (h)x=1.00

    图  4  CoCrFeNiCuTix高熵合金和45#钢电位极化曲线:(a)1.0 mol·L-1 H2SO4溶液;(b)3.5%NaCl溶液

    Figure  4.  Potential polarization curves of CoCrFeNiCuTix high-entropy alloys and 45#steel: (a)1.0 mol·L-1 H2SO4 solution; (b)3.5%NaCl solution

    图  5  CoCrFeNiCuTix高熵合金经过1.0 mol·L-1 H2SO4溶液腐蚀后的显微形貌:(a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    Figure  5.  SEM morphology of CoCrFeNiCuTix high-entropy alloys after the corrosion in 1.0 mol·L-1 H2SO4 solution: (a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    图  6  CoCrFeNiCuTix高熵合金经过3.5%NaCl溶液腐蚀后的显微形貌:(a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    Figure  6.  SEM morphology of CoCrFeNiCuTix high-entropy alloys after the corrosion in 3.5%NaCl solution: (a)x=0.25;(b)x=0.50;(c)x=0.75;(d)x=1.00

    图  7  不同Ti含量Co Cr Fe Ni Cu Tix高熵合金的维氏硬度

    Figure  7.  Vickers hardness of CoCrFeNiCuTix high-entropy alloys with different molar ratio of Ti

    表  1  图 3中1~8区域能谱分析(原子数分数)

    Table  1.   DS analysis of zone 1~8 in Fig. 3 %

    位置 Co Cr Cu Fe Ni Ti
    1 18.39 20.74 17.52 20.75 18.97 3.63
    2 14.48 29.36 13.84 23.64 12.16 6.52
    3 20.18 17.53 15.35 18.46 22.34 6.14
    4 18.10 19.13 13.79 20.21 19.27 9.50
    5 17.86 21.43 11.19 18.45 18.87 12.25
    6 14.65 20.23 18.43 14.84 16.27 15.58
    7 22.10 21.53 6.57 13.40 19.13 17.27
    8 23.07 18.34 11.19 17.06 17.51 12.83
    下载: 导出CSV

    表  2  CoCrFeNiCuTix高熵合金和45#钢的电化学参数

    Table  2.   Electrochemical parameters of CoCrFeNiCuTix high-entropy alloys and 45#steel

    溶液 合金 Ecorr/V (vs SCE) Icorr/(A·cm−2)
    1.0 mol·L−1H2SO4 CoCrFeNiCuTi0.25 -0.447 6.310 × 10-4
    CoCrFeNiCuTi0.50 -0.240 3.162 × 10-5
    CoCrFeNiCuTi0.75 -0.373 1.585 × 10-4
    CoCrFeNiCuTi1.00 -0.336 5.012 × 10-5
    45# -0.499 3.981 × 10-4
    3.5% NaCl CoCrFeNiCuTi0.25 -0.249 1.585 × 10-4
    CoCrFeNiCuTi0.50 -0.263 1.995 × 10-5
    CoCrFeNiCuTi0.75 -0.243 3.162 × 10-5
    CoCrFeNiCuTi1.00 -0.260 3.785 × 10-5
    45# -0.373 3.981 × 10-3
    下载: 导出CSV
  • [1] Liang X B, Wei M, Cheng J B, et al. Research progress in advanced materials of high-entropy alloys. J Mater Eng, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm

    梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展. 材料工程, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm
    [2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [3] Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6(1-2): 74 doi: 10.1002/adem.200300507/abstract
    [4] Li Z L, Sun H F, Gao P, et al. Research and development of thenew multi-principal high elements entropy alloy. New Technol NewProcess, 2010(8): 62 doi: 10.3969/j.issn.1003-5311.2010.08.020

    李忠丽, 孙宏飞, 高鹏, 等. 新型多主元高熵合金的研究进展. 新技术新工艺, 2010(8): 62 doi: 10.3969/j.issn.1003-5311.2010.08.020
    [5] Zhu H Y, Sun H F, Li Y C. Research status and development of multi-principal high-entropy alloys. Adv Mater Ind, 2008(9): 67 doi: 10.3969/j.issn.1008-892X.2008.09.015

    朱海云, 孙宏飞, 李业超. 多主元高熵合金的研究现状与发展. 新材料产业, 2008(9): 67 doi: 10.3969/j.issn.1008-892X.2008.09.015
    [6] Zhang J J. The Microstructure and Performance of High-Entropy Alloys AlxCoCrFeNiTi0.5[Dissertation]. Dalian: Dalian University of Technology, 2013

    张峻嘉. AlxCoCrFeNiTi0.5系高熵合金的微观组织结构及性能[学位论文]. 大连: 大连理工大学, 2013
    [7] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Nihigh-entropy alloys. Acta Mater, 2013, 61(13): 4887 doi: 10.1016/j.actamat.2013.04.058
    [8] Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropyalloys. Mater Res Soc Commun, 2014, 4(2): 57 http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1179%2F1743284715Y.0000000031&key=10.1557%2Fmrc.2014.11
    [9] Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep, 2013, 3: 1455 doi: 10.1038/srep01455
    [10] Zhu J M, Fu H M, Zhang H F, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng A, 2010, 527(26): 6975 doi: 10.1016/j.msea.2010.07.028
    [11] Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 doi: 10.1016/j.corsci.2010.06.025
    [12] Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 doi: 10.1016/j.actamat.2011.06.041
    [13] Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd, 2009, 486(1-2): 427 doi: 10.1016/j.jallcom.2009.06.182
    [14] Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15(3): 357 doi: 10.1016/j.intermet.2006.08.005
    [15] Xie H B, Liu G Z, Guo J J, et al. Effect of Ti addition on the microstructure and wear properties of AlFeCrCoCu high-entropy alloy. Rare Met Mater Eng, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm

    谢红波, 刘贵仲, 郭景杰, 等. Ti对AlFeCrCoCu高熵合金组织及耐磨性能的影响. 稀有金属材料与工程, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm
    [16] Yu Y, Xie F Q, Zhang T B, et al. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy. Rare Met Mater Eng, 2012, 41(5): 862 doi: 10.3969/j.issn.1002-185X.2012.05.023

    于源, 谢发勤, 张铁邦, 等. AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能. 稀有金属材料与工程, 2012, 41(5): 862 doi: 10.3969/j.issn.1002-185X.2012.05.023
    [17] Zhang Y, Zhou Y J, Hui X D, et al. Alloying of bulk metallic glass and high-entropy alloys. Sci China G, 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm

    张勇, 周云军, 惠希东, 等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑), 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm
    [18] Niu X L. Study of Steel Corrosion Protection by High-Entropy Alloy Coatings AlxFeCrCoNiCu[Dissertation]. Dalian: Dalian University of Technology, 2014

    牛雪莲. 钢基体腐蚀防护的高熵合金AlxFeCrCoNiCu涂层研究[学位论文]. 大连: 大连理工大学, 2014
    [19] Sheng H F. Processing, Microstructure and Properties of Al xCoCrCuFeNi High Entropy Alloys and Their in-situ Composite[Dissertation]. Hefei: University of Science and Technology of China, 2014

    盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究[学位论文]. 合肥: 中国科学技术大学, 2014
    [20] Cantor B, Chang I T H, Knight P, et al. Microstructural development inequiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 http://www.sciencedirect.com/science/article/pii/s0921509303009936
    [21] Dong X T, Liu G Z, Ban Y F, et al. Effect of Ti element on microstructure and hardness of Al1.2FeCrCoNiTix high-entropy alloys. Hot Working Technol, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm

    董鑫涛, 刘贵仲, 班煜峰, 等. Ti元素对Al1.2FeCrCoNiTix高熵合金微观组织及硬度的影响. 热加工工艺, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  945
  • HTML全文浏览量:  359
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回