钛粉粒度对轧制烧结多孔钛板力学性能的影响

谈萍 李增峰 葛渊 赵少阳 王利卿 沈垒 殷京瓯 文佳艺

谈萍, 李增峰, 葛渊, 赵少阳, 王利卿, 沈垒, 殷京瓯, 文佳艺. 钛粉粒度对轧制烧结多孔钛板力学性能的影响[J]. 粉末冶金技术, 2020, 38(1): 30-35. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.005
引用本文: 谈萍, 李增峰, 葛渊, 赵少阳, 王利卿, 沈垒, 殷京瓯, 文佳艺. 钛粉粒度对轧制烧结多孔钛板力学性能的影响[J]. 粉末冶金技术, 2020, 38(1): 30-35. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.005
TAN Ping, LI Zeng-feng, GE Yuan, ZHAO Shao-yang, WANG Li-qing, SHEN Lei, YIN Jing-ou, WEN Jia-yi. Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process[J]. Powder Metallurgy Technology, 2020, 38(1): 30-35. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.005
Citation: TAN Ping, LI Zeng-feng, GE Yuan, ZHAO Shao-yang, WANG Li-qing, SHEN Lei, YIN Jing-ou, WEN Jia-yi. Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process[J]. Powder Metallurgy Technology, 2020, 38(1): 30-35. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.005

钛粉粒度对轧制烧结多孔钛板力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.005
基金项目: 

陕西省重点研发计划资助项目 2017ZDXM-GY-029

详细信息
    通讯作者:

    李增峰, E-mail: lzfping@163.com

  • 中图分类号: TG146.2+3

Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process

More Information
  • 摘要: 对不同粒度钛粉的流动性、松装密度和振实密度进行分析, 经轧制和烧结制备出满足湿法冶金需求的多孔钛板, 研究了钛粉粒度对轧制烧结多孔钛板力学性能的影响。结果表明: 轧制烧结多孔钛板的最大孔径和孔隙度随钛粉粒度的减小而减小, 钛板密度、剪切强度、抗弯强度、抗拉强度及伸长率均随钛粉粒度的减小有所增加; 当钛粉粒度范围为89~104 μm时, 粉末轧制烧结多孔钛板的综合力学性能较高。
  • 图  1  气流磨TiH2粉末扫描电子显微形貌

    Figure  1.  SEM morphology of airflow milled TiH2 powders

    图  2  粉末轧制法制备多孔钛板的流程图

    Figure  2.  Schematic diagram of the porous titanium sheets by rolling and sintering

    图  3  不同粒度粉末轧制板坯和烧结板材的微观孔隙形貌图:(a)104~150 μm钛粉轧制板坯;(b)104~150 μm钛粉烧结板材;(c)44~74 μm钛粉轧制板坯;(d) 44~74 μm钛粉烧结板材

    Figure  3.  Microstructures of the rolled and sintered sheets with different titanium powder sizes: (a) rolled sheets prepared by titanium powders in the size of 104~150 μm; (b) sintered sheets prepared by titanium powders in the size of 104~150 μm; (c) rolled sheets prepared by titanium powders in the size of 44~74 μm; (d) sintered sheets prepared by titanium powders in the size of 44~74 μm

    图  4  剪切强度测试示意图

    Figure  4.  Sketch map of test for shear strength

    图  5  不同粒度钛粉轧制烧结多孔钛板的剪切应力应变曲线

    Figure  5.  Shear stress-strain curves of the porous titanium sheets prepared by rolling and sintering with different particle sizes

    图  6  弯曲实验平台

    Figure  6.  Schematic illustration of the bending test

    表  1  钛粉化学成分(质量分数)

    Table  1.   Chemical composition of titanium powders %

    C H O N Fe Si Ti
    0.011 0.026 0.120 0.013 0.070 0.030 余量
    下载: 导出CSV

    表  2  不同粒度钛粉的粉末性能

    Table  2.   Properties of the titanium powders with different sizes

    粒度/μm 松装密度/
    (g·cm−3)
    振实密度/
    (g·cm−3)
    流动性/
    [s·(50g) −1]
    104~150 1.13 1.78 43.40
    89~104 1.29 1.90 45.20
    74~89 1.30 1.96 57.50
    44~74 1.02 2.00
    下载: 导出CSV

    表  3  不同粒度钛粉轧制多孔钛板所需轧制力以及钛板的厚度、密度及孔隙度

    Table  3.   Green rolling force, thickness, density, and porosity of the porous titanium sheets by rolling and sintering with different particle sizes

    粒度/μm 生坯轧制成形最小压力/t 厚度/
    mm
    密度/(g·cm−3) 孔隙度/
    %
    最大孔径/
    μm
    104~150 171 3.06 2.84 37.45 39.0
    89~104 168 2.53 3.07 32.38 33.6
    74~89 162 2.17 3.30 27.31 33.0
    44~74 159 1.90 3.55 21.81 32.0
    下载: 导出CSV

    表  4  不同粒度钛粉轧制烧结多孔钛板的拉伸性能

    Table  4.   Tensile properties of the porous titanium sheets by rolling and sintering with different particle sizes

    粉末粒度/μm 抗拉强度/MPa 伸长率/%
    104~150 73.4 ± 1.2 0.82 ± 0.08
    89~104 75.7 ± 1.6 0.98 ± 0.04
    74~89 80.1 ± 4.3 1.12 ± 0.06
    44~74 105.0 ± 8.0 1.08 ± 0.21
    下载: 导出CSV

    表  5  不同粒度钛粉的轧制烧结多孔钛板厚度

    Table  5.   Thickness of the porous titanium sheets prepared by rolling and sintering with different particle sizes

    粉末粒度/μm 厚度/mm
    104~150 2.53
    89~104 2.00
    74~89 1.90
    下载: 导出CSV

    表  6  不同粒度钛粉轧制烧结多孔钛板的剪切强度

    Table  6.   Shear strength of the porous titanium sheets prepared by rolling and sintering with different particle sizes

    粉末粒度/μm 剪切强度/MPa
    104~150 69.38
    89~104 156.21
    74~89 161.60
    下载: 导出CSV

    表  7  不同粒度钛粉的轧制烧结多孔钛板抗弯性能

    Table  7.   Bending properties of the porous titanium sheets prepared by rolling and sintering with different particle sizes

    粉末粒度/μm 载荷/N 抗弯强度/MPa 弯曲角/(º)
    104~150 153.55 113.57 10.0
    89~104 140.27 174.17 18.5
    74~89 150.06 118.00 14.0
    44~74 152.07 128.10 10.0
    下载: 导出CSV

    表  8  104~89 μm的钛粉轧制烧结多孔钛板的弯曲强度

    Table  8.   Bending strength of the porous titanium sheets prepared by rolling and sintering with the particle sizes of 89~104 μm

    粉末粒度/μm 弯曲试样的宽度/mm 载荷/N 抗弯强度/MPa 弯曲角/(º)
    89~104 15.20 95.70 118.06 18
    89~104 15.20 140.23 159.93 20
    89~104 15.10 142.63 170.23 16
    下载: 导出CSV
  • [1] Xi Z P, Tang H P. Sintered Porous Metal Materials. Beijing: Metallurgical Industry Press, 2009

    奚正平, 汤慧萍. 烧结金属多孔材料. 北京: 冶金工业出版社, 2009
    [2] Guo D, Zhou Z D. Metal Powder Rolling. Beijing: Metallurgical Industry Press, 1984

    郭栋, 周志德. 金属粉末轧制. 北京: 冶金工业出版社, 1984
    [3] German R M. Powder Metallurgy Science. Princeton: Metal Powder Industries Federation, 1994
    [4] Wang F, Liu G Y, Yang J J, et al. Application and development of metal filter materials in high-temperature gas filtration. Powder Metall Technol, 2018, 36(3): 230 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.012

    王凡, 刘冠颖, 杨军军, 等. 金属过滤材料在高温除尘中的应用与发展. 粉末冶金技术, 2018, 36(3): 230 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.012
    [5] Wang F, Yang J J, Liu G Y, et al. Application of asymmetric structure metal filter on gasoline adsorption desulphurization device. Powder Metall Technol, 2018, 36(3): 206 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.008

    王凡, 杨军军, 刘冠颖, 等. 非对称结构金属滤材在汽油吸附脱硫装置上的应用. 粉末冶金技术, 2018, 36(3): 206 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.008
    [6] Yuan W J, Li J G, Shen Q, et al. A study on magnetic properties of high Si steel obtained through powder rolling processing. J Magn Magn Mater, 2008, 320(1-2): 76 doi: 10.1016/j.jmmm.2007.05.008
    [7] Ro D H, Toaz M W, Moxson V S. The direct powder-rolling process for producing thin metal strip. JOM, 1983, 35(1): 34 doi: 10.1007/BF03338182
    [8] Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2-3): 135 doi: 10.1016/j.jmmm.2004.04.098
    [9] Sakai M, Kondo Y, Minoura S, et al. A new lead alloy current-collector manufactured by a powder rolling process and its corrosion behavior under lead-acid battery conditions. J Power Sources, 2008, 185(1): 559 doi: 10.1016/j.jpowsour.2008.06.035
    [10] Fraser R W, Evans D J I. The properties of cobalt-iron alloys prepared by powder rolling. Powder Metall, 1968, 11(22): 358 doi: 10.1179/pom.1968.11.22.009
    [11] Shima S, Yamada M. Compaction of metal powder by rolling. Powder Metall, 1984, 27(1): 39 doi: 10.1179/pom.1984.27.1.39
    [12] Wang W F. Rolling compaction, magnetic properties, and microstructural development during sintering of Fe-Si. Powder Metall, 1995, 38(4): 289 doi: 10.1179/pom.1995.38.4.289
    [13] Vinogradov G A. Theory and practice of rolling metal powders. Powder Metall Met Ceram, 2002, 41(9-10): 517 doi: 10.1023/A%3A1022201410282
    [14] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim: Wiley-VCH, 2003
    [15] Banerjee D, Williams J C. Perspectives on titanium science and technology. Acta Mater, 2013, 61(3): 844 doi: 10.1016/j.actamat.2012.10.043
    [16] He J, Xiao Z Y, Guan H J, et al. High velocity compaction behavior and sintered properties of pure Ti powder. Powder Metall Technol, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004

    何杰, 肖志瑜, 关航健, 等. 纯钛粉高速压制行为及其烧结性能研究. 粉末冶金技术, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004
    [17] Zhang Z W, Wang L Y, Huang G S, et al. Research on powder rolling of metal strips. Light Alloy Fabr Technol, 2005, 33(4): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200504010.htm

    张忠伟, 汪凌云, 黄光胜, 等. 金属带材粉末轧制的研究. 轻合金加工技术, 2005, 33(4): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200504010.htm
    [18] Dai L N, Yang W L, Zhang Y H, et al. Effect of powdersizes on pore structure and permeability of 316L stainless steel porous materials. Powder Metall Technol, 2016, 34(1): 31 doi: 10.3969/j.issn.1001-3784.2016.01.006

    代丽娜, 杨万利, 张永辉, 等. 粉料粒度对316L不锈钢多孔材料孔隙结构和透气性能的影响. 粉末冶金技术, 2016, 34(1): 31 doi: 10.3969/j.issn.1001-3784.2016.01.006
    [19] Luo X L, Liu J, Hu X P. Analysis on dynamic mechanics performance of metal powders by impact loading. Powder Metall Technol, 2018, 36(2): 111 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006

    罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析. 粉末冶金技术, 2018, 36(2): 111 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
    [20] Anderson T L. Fracture Mechanics: Fundamentals and Applications. 3rd Ed. Boca Raton: CRC Press, 2005
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  139
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回