表层富立方相WC-TiC-Co功能梯度硬质合金

陈巧旺 邓莹 姜山 姜中涛 敬小龙 陈慧 李力

陈巧旺, 邓莹, 姜山, 姜中涛, 敬小龙, 陈慧, 李力. 表层富立方相WC-TiC-Co功能梯度硬质合金[J]. 粉末冶金技术, 2020, 38(1): 36-41. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.006
引用本文: 陈巧旺, 邓莹, 姜山, 姜中涛, 敬小龙, 陈慧, 李力. 表层富立方相WC-TiC-Co功能梯度硬质合金[J]. 粉末冶金技术, 2020, 38(1): 36-41. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.006
CHEN Qiao-wang, DENG Ying, JIANG Shan, JIANG Zhong-tao, JING Xiao-long, CHEN Hui, LI Li. Functionally graded cemented carbides of WC-TiC-Co with cubic rich surface[J]. Powder Metallurgy Technology, 2020, 38(1): 36-41. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.006
Citation: CHEN Qiao-wang, DENG Ying, JIANG Shan, JIANG Zhong-tao, JING Xiao-long, CHEN Hui, LI Li. Functionally graded cemented carbides of WC-TiC-Co with cubic rich surface[J]. Powder Metallurgy Technology, 2020, 38(1): 36-41. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.006

表层富立方相WC-TiC-Co功能梯度硬质合金

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.006
基金项目: 

重庆市基础科学与前沿技术研究专项资助项目 CSTC2017JCYJBX0051

重庆市基础科学与前沿技术研究专项资助项目 CSTC2018JCYJAX0472

重庆市教委科学技术研究资助项目 KJQN201801312

重庆市教委科学技术研究资助项目 KJQN201801306

重庆市教委科学技术研究资助项目 KJQN201801314

重庆市教委科学技术研究资助项目 KJ1711283

重庆文理学院引进人才项目资助项目 2017RXC24

重庆文理学院引进人才项目资助项目 P2017XC08

详细信息
    通讯作者:

    陈巧旺, E-mail: chenqiaowang1999@163.com

  • 中图分类号: TF124;TG135.5

Functionally graded cemented carbides of WC-TiC-Co with cubic rich surface

More Information
  • 摘要: 采用粉末冶金技术制备WC-15%TiC-6%Co硬质合金(质量分数), 通过控制氮气压力、固相烧结温度和烧结时间对合金进行渗氮烧结, 得到表层富立方相WC-TiC-Co功能梯度硬质合金。利用扫描电子显微镜、X射线衍射仪和能谱仪研究硬质合金梯度区域的微观组织、物相组成及元素分布。结果表明: 制备的WC-TiC-Co硬质合金梯度层厚度大于20 μm, 并且表层富含Ti元素和N元素, 其组成形式为Ti(C0.7, N0.3)。
  • 图  1  样品1烧结工艺示意图

    Figure  1.  Schematic diagram of sintering process for sample 1

    图  2  样品1不同深度X射线衍射图谱

    Figure  2.  XRD patterns of sample 1 in different depth

    图  3  样品1横截面微观组织及元素分布:(a)微观形貌;(b)W;(c)Ti;(d)Co;(e);N

    Figure  3.  Microstructures and element distribution in transverse section of sample 1: (a) microstructure; (b) W; (c) Ti; (d) Co; (e) N

    图  4  固相烧结温度对功能梯度硬质合金微观组织和成分的影响:(a)样品1显微形貌;(b)样品1能谱分析;(c)样品2显微形貌;(d)样品2能谱分析

    Figure  4.  Effect of solid sintering temperature on the microstructure and composition of the functionally graded cemented carbides: (a) SEM image of sample 1; (b) EDS of sample 1; (c) SEM image of sample 2; (d) EDS of sample 2

    图  5  固相烧结时间对功能梯度硬质合金微观组织的影响:(a)样品1;(b)样品3

    Figure  5.  Effect of solid sintering time on the microstructure of the functionally graded cemented carbides: (a) sample 1; (b) sample 3

    图  6  氮气压力对功能梯度硬质合金微观组织的影响:(a)样品1;(b)样品4

    Figure  6.  Effect of nitrogen pressure on the microstructure of the functionally graded cemented carbides: (a) sample 1; (b) sample 4

    表  1  YT15硬质合金烧结参数

    Table  1.   Sintering parameters of YT15 cemented carbides

    样品 固相烧结温度/℃ 固相烧结时间/h 氮气压力/kPa
    1 1100 2.0 3
    2 1200 2.0 3
    3 1100 2.5 3
    4 1100 2.0 1
    下载: 导出CSV
  • [1] Shi L Y, Zhang S Q, Huang J H. Advances information of WC-Co functionally graded hard metals. Powder Metall Technol, 2010, 28(4): 305 http://pmt.ustb.edu.cn/article/id/fmyjjs201004015

    史留勇, 张守全, 黄继华. WC-Co功能梯度硬质合金研究进展. 粉末冶金技术, 2010, 28(4): 305 http://pmt.ustb.edu.cn/article/id/fmyjjs201004015
    [2] Zhang W B, Sha C S, Du Y, et al. Computer simulations and verification of gradient zone formation in cemented carbides. Acta Metall Sinica, 2011, 47(10): 1307 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201110014.htm

    张伟彬, 沙春生, 杜勇, 等. 梯度硬质合金梯度层形成的计算机模拟及验证. 金属学报, 2011, 47(10): 1307 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201110014.htm
    [3] Li X F, Liu Y, Liu B, et al. Preparation of functionally graded cemented carbide with coarse grain by solid carburizing and its microstructure and properties. Cemented Carbide, 2017, 34(6): 398 https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201706006.htm

    李晓峰, 刘咏, 刘彬, 等. 固体渗碳制备粗晶功能梯度硬质合金及其组织与性能研究. 硬质合金, 2017, 34(6): 398 https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201706006.htm
    [4] Fischer Udo K R, Hartzell Erik T, Akerman Jan G H. Cemented Carbide Body Used Preperably for Rock Drilling and Mineral Cutting: US Patent, 4743515. 1988-10-05
    [5] Guo Y, Li Z Y, Li Y. Preparation of η phase powder and the effect of sintering process on the plate-like WC grain. Powder Metall Technol, 2017, 35(1): 39 doi: 10.3969/j.issn.1001-3784.2017.01.007

    郭瑜, 李志友, 李烨. η相粉末的制备及烧结工艺对板状WC晶粒的影响. 粉末冶金技术, 2017, 35(1): 39 doi: 10.3969/j.issn.1001-3784.2017.01.007
    [6] Suzuki H, Hayashi K, Taniguchi Y, et al. Beta-free layer formed near the surface of vacuum-sintered WC-beta-Co alloys containing nitrogen. Trans Jpn Inst Met, 1981, 22(11): 758 doi: 10.2320/matertrans1960.22.758
    [7] Schwarzkopf M, Exner H E, Fischmeister H F, et al. Kinetics of compositional modification of (W, Ti) C-WC-Co alloy surfaces. Mater Sci Eng A, 1988, 105-106: 225 doi: 10.1016/0025-5416(88)90500-9
    [8] Ekroth M, Frykholm R, Lindholm M, et al. Gradient zones in WC-Ti (C, N)-Co-based cemented carbides: Experimental study and computer simulations. Acta Mater, 2000, 48(9): 2177 doi: 10.1016/S1359-6454(00)00029-X
    [9] Shi L Y, Huang J H, Lin B, et al. Electron probe micro analysis on element distribution across surface layer of graded cemented carbide with cubic carbide free layer. Mater Sci Eng Powder Metall, 2014, 19(3): 349 doi: 10.3969/j.issn.1673-0224.2014.03.003

    史留勇, 黄继华, 林彬, 等. 脱β层梯度硬质合金表层元素分布的电子探针微区分析. 粉末冶金材料科学与工程, 2014, 19(3): 349 doi: 10.3969/j.issn.1673-0224.2014.03.003
    [10] Barbatti C, Garcia J, Sket F, et al. Influence of nitridation on surface microstructure and properties of graded cemented carbides with Co and Ni binders. Surf Coat Technol, 2008, 202(24): 5962 doi: 10.1016/j.surfcoat.2008.06.179
    [11] Lengaurer W, Dreyer K. Functionally graded hardmetals. J Alloys Compd, 2002, 338(1-2): 194 doi: 10.1016/S0925-8388(02)00232-3
    [12] Chen Q W, Jiang X Q, Jiang A M. Microstructure of YT15 graded cemented carbides by nitriding sintering. Mater Sci Eng Powder Metall, 2011, 16(3): 437 doi: 10.3969/j.issn.1673-0224.2011.03.021

    陈巧旺, 蒋显全, 姜爱民. 渗氮烧结的YT15梯度硬质合金微观组织. 粉末冶金材料科学与工程, 2011, 16(3): 437 doi: 10.3969/j.issn.1673-0224.2011.03.021
    [13] Chen Q W, Liu B, Jiang Z T, et al. Sintering process of functionally graded cemented carbides with cubic rich surface. J Mater Sci Eng, 2014, 32(1): 93 doi: 10.3969/j.issn.1673-2812.2014.01.019

    陈巧旺, 刘兵, 姜中涛, 等. 表层富立方相功能梯度硬质合金的烧结工艺. 材料科学与工程学报, 2014, 32(1): 93 doi: 10.3969/j.issn.1673-2812.2014.01.019
    [14] Feng P, He Y H, Xiao Y F, et al. Advance in functionally graded cemented carbides with cubic carbide free layer. Chin J Nonferrous Met, 2007, 17(8): 1221 doi: 10.3321/j.issn:1004-0609.2007.08.001

    丰平, 贺跃辉, 肖逸峰, 等. 表面无立方相层功能梯度硬质合金的研究进展. 中国有色金属学报, 2007, 17(8): 1221 doi: 10.3321/j.issn:1004-0609.2007.08.001
    [15] Chen L M, Lengauer W, Dreyer K. Advances in modern nitrogen-containing hardmetals and cermets. Int J Refract Met Hard Mater, 2000, 18(2-3): 153 doi: 10.1016/S0263-4368(00)00016-0
    [16] Konyashin I Y. Activated nitriding of TiCN-based cermets. Surf Coat Technol, 1995, 73(1-2): 125 doi: 10.1016/0257-8972(94)02376-X
    [17] General Administration of Quality Supervision, Inspection and Quarantine. GB/T6394-2002 Metal-Methods for Estimating the Average Grain Size. Beijing: General Administration of Quality Supervision, Inspection and Quarantine, 2002

    国家质量监督检验检疫总局. GB/T6394-2002金属平均晶粒度测定方法. 北京: 国家质量监督检验检疫总局, 2002
    [18] Yan Y Q, Xi S M. Comparison of two alloys in measuring nitrogen potential. Ordn Mater Sci Eng, 1999, 22(4): 32
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  77
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-08
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回