原位合成SiC对铝基复合材料微观组织和力学性能的影响

卢博 朱建锋 方媛 赵旭 汪加欢 贺鹏

卢博, 朱建锋, 方媛, 赵旭, 汪加欢, 贺鹏. 原位合成SiC对铝基复合材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2020, 38(1): 42-50. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
引用本文: 卢博, 朱建锋, 方媛, 赵旭, 汪加欢, 贺鹏. 原位合成SiC对铝基复合材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2020, 38(1): 42-50. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
Citation: LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.007

原位合成SiC对铝基复合材料微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
基金项目: 

国家自然科学基金资助项目 51072109

陕西省科技厅科技统筹创新工程计划资助项目 2012KTDZ02-01-03

详细信息
    通讯作者:

    朱建锋, E-mail: zhujf@sust.edu.cn

  • 中图分类号: TB331

Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis

More Information
  • 摘要: 以铝粉、硅粉、石墨粉为原料, 通过冷压真空烧结原位合成了含不同质量分数SiC颗粒的SiC/Al-18Si复合材料。利用X射线衍射仪, 扫描电子显微镜和能谱分析仪等设备手段表征了铝基复合材料的相组成和微观结构, 研究了原位合成SiC对复合材料微观结构、抗弯强度和显微硬度的影响, 分析了复合材料力学性能的变化规律。结果表明: 复合材料的基体相为Al相, 第二相为Si相和SiC相; 原位合成的SiC颗粒弥散细小的分布在Al基体中, 其颗粒尺寸主要分布在0.2~2.8 μm, 具有亚微米、微米级的多尺度特性; 随着SiC质量分数的不断增加, 复合材料的显微硬度增大, 同时颗粒的平均尺寸仅由0.81 μm增大到1.13 μm, 但仍均匀分布, 正是这种尺寸稳定性, 使得SiC/Al-18Si复合材料硬度远大于Al-18Si; 当SiC质量分数为30%时, 材料的显微硬度最高, 达到HV 134, 相较于Al-18Si提高了88%。
  • 图  1  不同质量分数SiC/Al-18Si复合材料X射线衍射图谱:(a)10SiC/Al-18Si烧结前粉体;(b)烧结后10SiC/Al-18Si;(c)烧结后15SiC/Al-18Si;(d)烧结后20SiC/Al-18Si;(e)烧结后25SiC/Al-18Si;(f)烧结后30SiC/Al-18Si复合材料

    Figure  1.  XRD patterns of SiC/Al-18Si composites with different SiC content by mass: (a) 10SiC/Al-18Si powders before sintering; (b) 10SiC/Al-18Si after sintering; (c) 15SiC/Al-18Si after sintering; (d) 20SiC/Al-18Si after sintering; (e) 25SiC/Al-18Si after sintering; (f) 30SiC/Al-18Si after sintering

    图  2  含不同质量分数SiC颗粒的SiC/Al-18Si复合材料扫描电子显微形貌:(a)、(b)10SiC/Al-18Si;(c)、(d)15SiC/Al-18Si;(e)、(f)20SiC/Al-18Si;(g)、(h)25SiC/Al-18Si;(i)、(j)30SiC/Al-18Si

    Figure  2.  SEM morphology of SiC/Al-18Si composites with different SiC content bymass: (a), (b) 10SiC/Al-18Si; (c), (d) 15SiC/Al-18Si; (e), (f) 20SiC/Al-18Si; (g), (h) 25SiC/Al-18Si; (i), (j) 30SiC/Al-18Si

    图  3  10SiC/Al‒18Si显微形貌和能谱图:(a)显微形貌;(b)点1处能谱分析;(c)点2处能谱分析

    Figure  3.  SEM image and EDS spectrum of 10SiC/Al‒18Si: (a) SEM image; (b) EDS spectrum of spot 1; (c) EDS spectrum of spot 2

    图  4  10SiC/Al-18Si面扫描分析:(a)显微形貌;(b)C元素分布;(c)Si元素分布;(d)Al元素分布

    Figure  4.  Map scanning analysis of 10SiC/Al-18Si: (a) SEM image; (b) distribution of element C; (c) distribution of element Si; (d) distribution of element Al

    图  5  SiC/Al‒18Si复合材料中SiC颗粒尺寸分布;(a)10SiC/Al‒18Si;(b)20SiC/Al‒18Si;(c)30SiC/Al‒18Si

    Figure  5.  Size distribution of SiC particles in SiC/Al‒18Si composites: (a) 10SiC/Al‒18Si; (b) 20SiC/Al‒18Si; (c) 30SiC/Al‒18Si

    图  6  含不同质量分数SiC颗粒的SiC/Al-18Si复合材料相对密度

    Figure  6.  Relative density of SiC/Al-18Si composites with different SiC content by mass

    图  7  含不同质量分数SiC颗粒的SiC/Al-18Si复合材料抗弯强度

    Figure  7.  Bending strength of SiC/Al-18Si composites with different SiC content by mass

    图  8  含不同质量分数SiC颗粒的SiC/Al-18Si复合材料显微硬度

    Figure  8.  Microhardness of SiC/Al-18Si composites with different SiC content by mass

    图  9  含不同质量分数SiC颗粒的SiC/Al-18Si复合材料抗弯断口形貌:(a)10SiC/Al-18Si;(b)15SiC/Al-18Si;(c)20SiC/Al-18Si;(d)25SiC/Al-18Si;(e)30SiC/Al-18Si;(f)图9(e)局部放大图

    Figure  9.  Fracture morphology of SiC/Al-18Si composites with different SiC content by mass: (a) 10SiC/Al-18Si; (b) 15SiC/Al-18Si; (c) 20SiC/Al-18Si; (d) 25SiC/Al-18Si; (e) 30SiC/Al-18Si; (f) partial enlargement of Fig. 9(e)

    表  1  不同质量分数SiC/Al-18Si中Al衍射峰和衍射峰半高宽的变化

    Table  1.   Al diffraction peaks and FWHM of the SiC/Al-18Si composites with different SiC content by mass

    试样 衍射峰1,2θ/(°) 衍射峰1半高宽/(°) 衍射峰2,2θ/(°) 衍射峰3,2θ/(°)
    Al相标准值 38.47 44.73 65.13
    10SiC/Al-18Si粉体 38.50 0.170 44.76 65.16
    10SiC/Al-18Si 38.80 0.172 45.06 65.36
    15SiC/Al-18Si 38.64 0.178 44.86 65.22
    20SiC/Al-18Si 38.72 0.211 44.92 65.32
    25SiC/Al-18Si 38.58 0.176 44.82 65.18
    30SiC/Al-18Si 38.82 0.200 45.08 65.40
    下载: 导出CSV

    表  2  不同反应及物质的吉布斯自由能[20, 23-24]

    Table  2.   Gibbs free energy of different reactions and materials[20, 23-24]

    T/K GAl/(kJ·mol-1) GC/(kJ·mol-1) GSi/(kJ·mol-1) $G{}_{{\rm{A}}{{\rm{l}}_{\rm{4}}}{{\rm{C}}_{\rm{3}}}}$/ (kJ·mol-1) GSiC/(kJ·mol-1) $\Delta {G_{({\rm{4Al + 3C = A}}{{\rm{l}}_{\rm{4}}}{{\rm{C}}_{\rm{3}}})}}$/(kJ·mol-1) ΔG式2/(kJ·mol-1)
    298 -8.44 -1.71 -5.61 -218.17 -78.17 -179.28 -33.27
    400 -11.72 -2.45 -7.85 -230.79 -80.32 -176.56 -33.50
    600 -20.01 -4.79 -13.85 -265.68 -87.01 -171.27 -33.84
    800 -30.20 -8.25 -21.48 -311.37 -96.51 -165.82 -34.52
    1000 -42.72 -12.70 -30.36 -365.67 -108.34 -156.69 -39.15
    1200 -58.05 -18.01 -40.36 -427.17 -122.11 -140.94 -50.28
    1400 -74.44 -24.09 -51.23 -494.90 -137.57 -124.87 -61.88
    1600 -91.75 -30.83 -62.91 -568.16 -154.50 -108.67 -73.61
    注:T为反应温度;Gi为反应中不同物质的吉布斯自由能,i代表反应中不同物质;ΔGj为不同反应吉布斯自由能,j代表不同反应。
    下载: 导出CSV
  • [1] Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc, 2016, 99(5): 1534 doi: 10.1111/jace.14158
    [2] Buffiere J Y, Maire E, Verdu C, et al. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A, 1997, 234-236: 633 doi: 10.1016/S0921-5093(97)00302-X
    [3] El-kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des, 2014, 54(2): 348 http://www.sciencedirect.com/science/article/pii/S0261306913007930
    [4] Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc, 2013, 33(10): 1577 doi: 10.1016/j.jeurceramsoc.2013.02.013
    [5] Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 doi: 10.3969/j.issn.1001-3784.2016.01.002

    高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 doi: 10.3969/j.issn.1001-3784.2016.01.002
    [6] Li S, Xiong D G, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram Int, 2014, 40(5): 7539 doi: 10.1016/j.ceramint.2013.12.105
    [7] Du Y H, Zhang P, Wang Y J, et al. The uniform distribution of SiC particles in an A356-SiCp composite produced by the tilt-blade mechanical stirring. Acta Metall Sinica, 2013, 26(1): 69 doi: 10.1007/s40195-012-0502-9
    [8] Lim S C, Gupta M, Ren L, et al. The tribological properties of Al-Cu/SiCp metal-matrix composites fabricated using the rheocasting technique. J Mater Process Technol, 1999, 89-90(8): 591 http://www.sciencedirect.com/science/article/pii/S0924013699000679
    [9] Elsharkawi E A, Pucella G, Côte P, et al. Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q, 2014, 53(2): 160 doi: 10.1179/1879139513Y.0000000120
    [10] Wang D M, Zheng Z X, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int, 2017, 43(2): 1755 doi: 10.1016/j.ceramint.2016.10.104
    [11] Yang L, Zhang M. Fabrication of SiCp/Cu-Al electronic packaging material by pressureless infiltration method. Mater Sci Technol, 2013, 29(3): 326 doi: 10.1179/1743284712Y.0000000152
    [12] Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 doi: 10.1016/j.jmatprotec.2013.05.012
    [13] Salehi M, Farnoush H, Mohandesi J A. Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing. Mater Des, 2014, 63(2): 419 http://www.sciencedirect.com/science/article/pii/S0261306914004622
    [14] Zulfia A, Hand R J. Role of Mg and Mg+Si as external dopants in production of pure Al-SiC metal matrix composites by pressureless infiltration. Mater Sci Technol, 2000, 16(7-8): 867 doi: 10.1179/026708300101508586
    [15] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(3-4): 49 doi: 10.1016/S0927-796X(00)00024-3
    [16] Daniel B S S, Murthy V S R, Murty G S. Metal-ceramic composites via in-situ methods. J Mater Process Technol, 1997, 68(2): 132 doi: 10.1016/S0924-0136(96)00020-9
    [17] Oden L L, McCune R A. Phase equilibria in the Al-Si-C system. Metall Trans A, 1987, 18(12): 2005 doi: 10.1007/BF02647073
    [18] Du X F, Gao T, Li D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys. J Alloys Compd, 2014, 588(10): 374 http://www.sciencedirect.com/science/article/pii/S0925838813028296
    [19] Gao T, Wang D, Du X F, et al. Phase transformation mechanism of Al4C3 by the diffusion of Si and a novel method for in situ synthesis of SiC particles in Al melt. J Alloys Compd, 2016, 685: 91 doi: 10.1016/j.jallcom.2016.05.234
    [20] Zhao Y B. Research of SiC Nanoparticles and SiC/Al Composites by in situ Reaction[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2016

    赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究[学位论文]. 西安: 陕西科技大学, 2016
    [21] Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54(32): 98 http://www.sciencedirect.com/science/article/pii/S003039921300176X
    [22] Patterson A L. The Scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56(10): 978 doi: 10.1103/PhysRev.56.978
    [23] Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 1. Shenyang: Northeastern University Press, 1993

    梁英教, 车荫昌. 无机物热力学数据手册1. 沈阳: 东北大学出版社, 1993
    [24] Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 2. Shenyang: Northeastern University Press, 1993

    梁英教, 车荫昌. 无机物热力学数据手册2. 沈阳: 东北大学出版社, 1993
    [25] Nie J F, Li D K, Wang E Z, et al. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al-Si melt. J Alloys Compd, 2014, 613: 407 doi: 10.1016/j.jallcom.2014.06.040
    [26] Veeresh Kumar G B, Rao C S P, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites-a review. J Miner Mater Charact Eng, 2011, 10: 59 http://www.oalib.com/paper/12310
    [27] Chang F, Gu D D, Dai D H, et al. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf Coat Technol, 2015, 272: 15 doi: 10.1016/j.surfcoat.2015.04.029
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  991
  • HTML全文浏览量:  365
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回