新型自润滑模具材料的制备和高温性能研究

刘清阳 王华君 周春杨 姚振华 燕松山

刘清阳, 王华君, 周春杨, 姚振华, 燕松山. 新型自润滑模具材料的制备和高温性能研究[J]. 粉末冶金技术, 2020, 38(1): 51-58. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
引用本文: 刘清阳, 王华君, 周春杨, 姚振华, 燕松山. 新型自润滑模具材料的制备和高温性能研究[J]. 粉末冶金技术, 2020, 38(1): 51-58. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
LIU Qing-yang, WANG Hua-jun, ZHOU Chun-yang, YAO Zhen-hua, YAN Song-shan. Preparation and high temperature properties of new self-lubricating die materials[J]. Powder Metallurgy Technology, 2020, 38(1): 51-58. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
Citation: LIU Qing-yang, WANG Hua-jun, ZHOU Chun-yang, YAO Zhen-hua, YAN Song-shan. Preparation and high temperature properties of new self-lubricating die materials[J]. Powder Metallurgy Technology, 2020, 38(1): 51-58. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008

新型自润滑模具材料的制备和高温性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
基金项目: 

武汉理工大学优秀学位论文培育资助项目 2017-YS-006

详细信息
  • 中图分类号: TG76

Preparation and high temperature properties of new self-lubricating die materials

  • 摘要: 以铁镍基合金为基体, 添加硬质相Cr2O3及固体润滑剂CaF2, 利用粉末冶金工艺制备了高温自润滑热锻模具材料。采用X射线衍射仪、扫描电子显微镜及显微硬度计, 研究了烧结工艺对铁镍基自润滑材料力学性能的影响, 分析了Cr2O3和CaF2对铁镍基自润滑材料烧结性能的影响, 并得到了最佳烧结工艺。结果表明: 当烧结工艺为1320℃、保温2 h时, 制备得到的铁镍基自润滑材料力学性能优越; 硬质相Cr2O3质量分数从0增加到30%, 试样相对密度下降4.0%, 硬度从HV 227.3增加到HV 342.8;固体润滑剂CaF2质量分数从0增加到10%, 试样相对密度和硬度均下降; 通过600℃摩擦磨损实验发现, 随CaF2质量分数的增加, 试样摩擦系数和磨损率先降低后升高; 当添加质量分数20% Cr2O3和8% CaF2时, 自润滑模具材料的综合性能最佳。
  • 图  1  不同烧结温度0#样品宏观烧结形貌

    Figure  1.  Macro-morphology of 0# sample sintered at different temperatures

    图  2  不同烧结时间0#样品显微形貌(烧结温度1300 ℃):(a)20 min;(b)60 min;(c)120 min;(d)180 min

    Figure  2.  Micro-morphology of 0# sample sintered for different times at 1300 ℃: (a) 20 min; (b) 60 min; (c) 120 min; (d) 180 min

    图  3  不同烧结温度0#样品显微形貌(烧结时间120 min):(a)1200 ℃;(b)1250 ℃;(c)1280 ℃;(d)1300 ℃;(e)1320 ℃;(f)1350 ℃

    Figure  3.  Micro-morphology of 0# sample sintered at different temperatures for 120 min: (a) 1200 ℃; (b) 1250 ℃; (c) 1280 ℃; (d) 1300 ℃; (e) 1320 ℃; (f) 1350 ℃

    图  4  0#烧结样品相对密度(a)和硬度(b)与烧结温度关系

    Figure  4.  Relationship of relative density (a) and hardness (b) with the sintering temperature of 0# sample

    图  5  烧结试样相对密度(a)和硬度(b)与Cr2O3质量分数关系

    Figure  5.  Relationship of relative density (a) and hardness (b) with the Cr2O3 content by mass in sintering samples

    图  6  烧结试样力学性能和高温摩擦磨损性能与CaF2质量分数的关系曲线:(a)相对密度;(b)硬度;(c)摩擦系数;(d)体积磨损率

    Figure  6.  Relationship of mechanical properties and high temperature friction and wear properties with the CaF2 content by mass in sintering samples: (a) relative density; (b) hardness; (c) friction coefficient; (d) volume wear rate

    图  7  添加不同质量分数CaF2的烧结试样磨损形貌:(a)5#磨损形貌;(b)7#磨损形貌;(c)8#磨损形貌;(d)7#烧结形貌

    Figure  7.  Wear morphology of the sintering samples added by CaF2 in different content by mass: (a) wear morphology of 5#; (b) wear morphology of 7#; (c) wear morphology of 8#; (d) sintering morphology of 7#

    图  8  7#烧结样品X射线衍射分析

    Figure  8.  X-ray diffraction patterns of sample 7#

    表  1  铁镍基自润滑材料组元成分(质量分数)

    Table  1.   Component compositions of Ni-Fe-based self-lubricating materials %

    编号 基体,Fe-35Ni-15Cr-5Ti-4Mo-0.2C Cr2O3 CaF2
    0# 100 0 0
    1# 90 10 0
    2# 80 20 0
    3# 70 30 0
    4# 60 40 0
    5# 76 20 4
    6# 74 20 6
    7# 72 20 8
    8# 70 20 10
    下载: 导出CSV
  • [1] Kang J H, Park I W, Jae J S, et al. A study on die wear model of warm and hot forgings. Met Mater, 1998, 4(3): 477 doi: 10.1007/BF03187813
    [2] Barrau O, Boher C, Gras R, et al. Analysis of the friction and wear behaviour of hot work tool steel for forging. Wear, 2003, 255(7): 1444 http://www.sciencedirect.com/science/article/pii/S0043164803002801
    [3] Yan S S, Liu Z M. A cellular automaton model for friction process dynamic characteristics of gland self-lubricating composite. China Mech Eng, 2011, 22(10): 1222 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201110021.htm

    燕松山, 刘佐民. 高温发汗自润滑材料摩擦过程动态特征的元胞自动机模型. 中国机械工程, 2011, 22(10): 1222 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201110021.htm
    [4] Xu W, Xie T, Zhou H S, et al. Design for Fe/Cu based lead-free self-lubricating laminar composites. Powder Metall Technol, 2011, 29(2): 137 http://pmt.ustb.edu.cn/article/id/fmyjjs201102012

    徐伟, 解挺, 周海山, 等. 无铅自润滑铜/铁基层状复合材料设计与研究. 粉末冶金技术, 2011, 29(2): 137 http://pmt.ustb.edu.cn/article/id/fmyjjs201102012
    [5] Dellacorte C, Edmonds B J. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 ℃. Cleveland: NASA Lewis Research Center, 1995
    [6] Dellacorte C, Fellenstein J A. The effect of compositional tailoring on the thermal expansion and tribological properties of PS300: A solid lubricant composite coating. Tribol Trans, 1997, 40(4): 639 doi: 10.1080/10402009708983703
    [7] Dellacorte C, Sliney H E, Bogdanski M S. Tribological and mechanical comparison of sintered and HIPped PM212: High temperature self-lubricating composites // Annual Meeting of the Society of Tribologists and Lubrication Engineers. Philadelphia, 1992: 19920005910
    [8] Wu Z, Deng J X, Qi T, et al. Study on cutting performance with macro-texturing self-lubricated tools. Tool Eng, 2011, 45(7): 18 doi: 10.3969/j.issn.1000-7008.2011.07.006

    吴泽, 邓建新, 亓婷, 等. 微织构自润滑刀具的切削性能研究. 工具技术, 2011, 45(7): 18 doi: 10.3969/j.issn.1000-7008.2011.07.006
    [9] Guo J T, Zhou L Z, Yuan C, et al. Microstructure and properties of several originally invented and unique superalloys in China. Chin J Nonferrous Met, 2011, 21(2): 237 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102002.htm

    郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的几种高温合金的组织和性能. 中国有色金属学报, 2011, 21(2): 237 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102002.htm
    [10] Wang H J, Zhou C Y, Yao Z H, et al. Fe-Ni-Based High Temperature Self-Lubricating Hot Forging Die Material and Preparation Method: China Patent, 201810445936.3. 2018-9-25

    王华君, 周春杨, 姚振华, 等. 铁镍基高温自润滑热作模具材料及其制备方法: 中国专利, 201810445936.3. 2018-9-25
    [11] Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33(1): 65 http://www.sciencedirect.com/science/article/pii/S0263436812000388
    [12] Gethin D T, Arimn A K, Tran D V, et al. Compaction and ejection of green powder compacts. Powder Metall, 1994, 37(1): 42 doi: 10.1179/pom.1994.37.1.42
    [13] Ding H D, Fu S L, Zhu Y L, et al. Wear investigation of self-lubrication material slid friction. Chin J Nonferrous Met, 2001, 11(4): 616 doi: 10.3321/j.issn:1004-0609.2001.04.017

    丁华东, 傅苏黎, 朱有利, 等. 自润滑材料滑动摩擦磨损性能与机理. 中国有色金属学报, 2001, 11(4): 616 doi: 10.3321/j.issn:1004-0609.2001.04.017
    [14] Soroka I, Sereda P J. Interrelation of hardness, modulus of elasticity, and porosity in various gypsum systems. J Am Ceram Soc, 2010, 51(6): 337 doi: 10.1111/j.1151-2916.1968.tb15949.x/abstract
    [15] Zhu S Y, Bi Q L, Yang J, et al. Effect of fluoride content on friction and wear performance of Ni3Al matrix high-temperature self-lubricating composites. Tribol Lett, 2011, 43(3): 341 doi: 10.1007/s11249-011-9812-8
    [16] Peterson M B, Murray S F, Florek J J. Consideration of lubricants for temperatures above 1000 F. Tribol Trans, 1959, 2(2): 225
    [17] Peterson M B, Calabrese S J, Li S Z, et al. Paper Ⅰ (ⅱ) Frictional properties of lubricating oxide coatings. Tribology, 1990, 17: 15 http://www.sciencedirect.com/science/article/pii/S0167892208702372
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  45
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回