铜模吸铸与高能球磨制备Zr46Cu46Al8非晶合金的组织结构及晶化动力学研究

李东洋 陶平均 杨元政 黄正华 李福海 黄文豪

李东洋, 陶平均, 杨元政, 黄正华, 李福海, 黄文豪. 铜模吸铸与高能球磨制备Zr46Cu46Al8非晶合金的组织结构及晶化动力学研究[J]. 粉末冶金技术, 2020, 38(1): 59-65. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.009
引用本文: 李东洋, 陶平均, 杨元政, 黄正华, 李福海, 黄文豪. 铜模吸铸与高能球磨制备Zr46Cu46Al8非晶合金的组织结构及晶化动力学研究[J]. 粉末冶金技术, 2020, 38(1): 59-65. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.009
LI Dong-yang, TAO Ping-jun, YANG Yuan-zheng, HUANG Zheng-hua, LI Fu-hai, HUANG Wen-hao. Study on microstructure and crystallization kinetics of Zr46Cu46Al8 amorphous alloys prepared by copper mold absorption casting and high energy ball milling[J]. Powder Metallurgy Technology, 2020, 38(1): 59-65. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.009
Citation: LI Dong-yang, TAO Ping-jun, YANG Yuan-zheng, HUANG Zheng-hua, LI Fu-hai, HUANG Wen-hao. Study on microstructure and crystallization kinetics of Zr46Cu46Al8 amorphous alloys prepared by copper mold absorption casting and high energy ball milling[J]. Powder Metallurgy Technology, 2020, 38(1): 59-65. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.009

铜模吸铸与高能球磨制备Zr46Cu46Al8非晶合金的组织结构及晶化动力学研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.009
基金项目: 

广东省科技计划资助项目 2017B090901035

广东省科技计划资助项目 2016B090918088

广东省科技计划资助项目 2015B090901005

清远市2019年度省科技专项资金(“大专项+任务清单”管理模式)资助项目 2019DZX025

广州市科技计划资助项目 201807010012

广东省科学院发展专项资助项目 2019GDASYL-0203002

详细信息
    通讯作者:

    陶平均, E-mail: pjtao@gdut.edu.cn

  • 中图分类号: TG139.8

Study on microstructure and crystallization kinetics of Zr46Cu46Al8 amorphous alloys prepared by copper mold absorption casting and high energy ball milling

More Information
  • 摘要: 采用铜模吸铸法制备出直径3 mm的Zr46Cu46Al8块体非晶合金, 利用高能球磨法获得了不同粒径的合金粉体, 通过X射线衍射仪、示差扫描量热仪、扫描电镜等测试手段及热力学计算方法, 研究了制备方法对非晶合金组织结构及晶化动力学的影响。结果表明, 块体合金和粉体合金均可获得完全非晶结构; 块体非晶合金玻璃转变和晶化过程具有明显的动力学效应; 单因素变量法制备非晶粉体的最佳参数为: 转速300 r·min-1, 球料比30:1, 球磨时间15 h; 相同条件下, 除过冷液相区外, 块体非晶合金热力学参数普遍高于非晶粉体, 且晶化放热更剧烈; 随着加热速率增大, 二者热力学参数均向高温区移动, 过冷液相区的宽度也逐渐增加; 块体非晶合金和非晶粉体的特征温度表观激活能数值相近, 块体非晶态合金的表观激活能较非晶粉体高, 热稳定性更优。
  • 图  1  Zr46Cu46Al8块体非晶合金X射线衍射图谱

    Figure  1.  XRD patterns of Zr46Cu46Al8 bulk amorphous alloys

    图  2  不同球磨条件下得到的Zr46Cu46Al8合金X射线衍射图谱:(a)球磨时间;(b)转速; (c)球料比

    Figure  2.  XRD patterns of Zr46Cu46Al8 alloys obtained in various ball milling conditions: (a) milling time; (b) milling speeds; (c) ball-to-powder weight ratio

    图  3  不同球磨时间得到合金粉体的扫描电子显微形貌:(a)0 h;(b)6 h;(c)9 h;(d)15 h

    Figure  3.  SEM images of the alloy powders obtained by different ball milling time: (a) 0 h; (b) 6 h; (c) 9 h; (d) 15 h

    图  4  不同球磨时间Zr46Cu46Al8合金粉体差示扫描量热分析曲线

    Figure  4.  DSC curve of Zr46Cu46Al8 alloy powders with various ball milling times

    图  5  Zr46Cu46Al8块体非晶以及非晶粉体在不同加热速率下的差示扫描量热分析曲线:(a)块体合金;(b)非晶粉体

    Figure  5.  DSC curves of Zr46Cu46Al8 bulk amorphous and amorphous powders at different heating rates: (a) bulk amorphous alloys; (b) amorphous powders

    图  6  Zr46Cu46Al8块体非晶合金(a)和非晶粉体(b)的TgTxTp的Kissinger曲线

    Figure  6.  Kissinger curve of Tg, Tx, Tp of Zr46Cu46Al8 bulk amorphous alloys (a) and amorphous powders (b)

    图  7  Zr46Cu46Al8块体非晶合金(a)和非晶粉体(b)的TgTxTp的Ozawa曲线

    Figure  7.  Ozawa curve of Tg, Tx, Tp of Zr46Cu46Al8 bulk amorphous alloys (a) and amorphous powders (b)

    表  1  不同加热速率下Zr46Cu46Al8块体非晶的热力学参数值

    Table  1.   Thermodynamic parameters of Zr46Cu46Al8 bulk amorphous at different heating rates

    V / (℃·min-1) Tg/K Tx/K Tp/K Tx/K
    10 700.2 764.2 772.1 63.9
    20 707.9 772.9 782.5 64.9
    30 711.1 781.1 788.7 69.9
    40 721.4 786.5 794.9 65.1
    50 724.1 788.4 794.1 64.2
    下载: 导出CSV

    表  2  不同加热速率下Zr46Cu46Al8非晶粉体的热力学参数值

    Table  2.   Thermodynamic parameters of Zr46Cu46Al8 amorphous powders at different heating rates

    V / (℃·min-1) Tg/K Tx/K Tp/K Tx/K
    10 612.5 671.9 737.8 59.5
    20 619.3 688.1 763.2 68.8
    30 627.7 698.8 782.7 71.1
    40 635.8 705.8 793.9 69.9
    50 643.4 711.8 802.1 68.4
    下载: 导出CSV

    表  3  Kissinger方法和Ozawa方法计算所得合金各表观激活能

    Table  3.   Apparent activation energies of alloys calculated by Kissinger and Ozawa methods

    方法 Eg/(kJ·mol-1) Ex/(kJ·mol-1) Ep/(kJ·mol-1)
    Kissinger1 254.92 300.99 290.27
    Ozawa1 266.09 314.66 301.57
    Kissinger2 151.24 143.08 105.92
    Ozawa2 162.88 153.98 118.99
    下载: 导出CSV
  • [1] Hao L, Chen X D, Yuan Z Z, et al. Recent development of bulk amorphous alloy. Mater Rev, 2004, 18(8): 22 doi: 10.3321/j.issn:1005-023X.2004.08.007

    郝雷, 陈学定, 袁子洲, 等. 大块非晶合金的研究进展. 材料导报, 2004, 18(8): 22 doi: 10.3321/j.issn:1005-023X.2004.08.007
    [2] Wang L Q, Zhai S Q, Ding R, et al. Recent development of bulk amorphous alloys. Foundry Technol, 2017, 38(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201702005.htm

    王立强, 翟慎秋, 丁锐, 等. 大块非晶合金研究进展. 铸造技术, 2017, 38(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201702005.htm
    [3] Adachi N, Todaka Y, Yokoyama Y, et al. Cause of hardening and softening in the bulk glassy alloy Zr50Cu40Al10 after high-pressure torsion. Mater Sci Eng A, 2015, 627: 171 doi: 10.1016/j.msea.2014.12.101
    [4] Inoue A, Takeuchi A. Recent progress in bulk glassy alloys. Mater Trans, 2002, 43(8): 1892 doi: 10.2320/matertrans.43.1892
    [5] Inoue A, Shen B L. Formation and applications of bulk glassy alloys in late transition metal base system // Flow Dynamics: The Second International Conference on Flow Dynamics. Sendai, 2006: 11
    [6] Ashley S. Metallic glass bulk up. Mech Eng, 1998, 120(6): 72 doi: 10.1115/1.1998-JUN-4
    [7] Zhu Y T, Liu Y, Li F, et al. Preparation of Zr50Cu40Al10 amorphous powder by mechanical alloying and its crystallization behaviors. Mater Sci Eng Powder Metall, 2010, 15(1): 64 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201001016.htm

    朱艺添, 刘咏, 李飞, 等. 机械合金化制备Zr50Cu40Al10非晶合金粉末及其晶化研究. 粉体冶金材料科学与工程, 2010, 15(1): 64 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201001016.htm
    [8] Li B Q, Lu M, Wang Y N. A new probe for studying mechanical alloying of Cu–Zn mixed powder. Prog Nat Sci, 1994, 4(3): 361 doi: 10.3321/j.issn:1002-008X.1994.03.020

    李百秦, 鹿牧, 王业宁. 研究Cu–Zn混合粉末机械合金化过程的一种新探针. 自然科学进展, 1994, 4(3): 361 doi: 10.3321/j.issn:1002-008X.1994.03.020
    [9] Guan G J. The Effect of Adulteration on the Fe Based Alloys Prepared by Mechanical Alloying and the Studies of Its Magnetic Properties [Dissertation]. Qingdao: China University of Petroleum, 2007

    关广金. 掺杂对机械合金化制备Fe基合金的影响及其磁性研究[学位论文]. 青岛: 中国石油大学, 2007
    [10] Zhang X H. The Preparation of Fe–Co–C Amorphous Powders by Mechanical Alloying and the Studies of Its Magnetic Properties [Dissertation]. Qingdao: China University of Petroleum, 2005

    张晓花. 机械合金化制备Fe–Co–C系非晶合金粉末及磁性能研究[学位论文]. 青岛: 中国石油大学, 2005
    [11] Xu C X, Pan F S, Wang J F, et al. Synthesis of Mg based amorphous alloy by ball milling and its thermal stability. Mater Rev, 2007, 21(5A): 189 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-CLDB200705001068.htm

    许春霞, 潘复生, 王敬丰, 等. 球磨法制备Mg基非晶合金及其热稳定性. 材料导报, 2007, 21(5A): 189 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-CLDB200705001068.htm
    [12] Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand, 1956, 57(4): 217 doi: 10.6028/jres.057.026
    [13] Starink M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta, 2003, 404(1): 163 http://www.sciencedirect.com/science/article/pii/S0040603103001448
    [14] Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal, 1970, 2(3): 301 doi: 10.1007/BF01911411
    [15] Flynn J H. The isoconversional method for determination of energy of activation at constant heating rates. J Thermal Anal, 1983, 27(1): 95 doi: 10.1007/BF01907325
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2658
  • HTML全文浏览量:  86
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回