铝基烧结含油轴承研究现状

陈秀丽 查五生 万海毅

陈秀丽, 查五生, 万海毅. 铝基烧结含油轴承研究现状[J]. 粉末冶金技术, 2020, 38(1): 74-78. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.011
引用本文: 陈秀丽, 查五生, 万海毅. 铝基烧结含油轴承研究现状[J]. 粉末冶金技术, 2020, 38(1): 74-78. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.011
CHEN Xiu-li, ZHA Wu-sheng, WAN Hai-yi. Research situation for Al-based sintered oil-bearing[J]. Powder Metallurgy Technology, 2020, 38(1): 74-78. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.011
Citation: CHEN Xiu-li, ZHA Wu-sheng, WAN Hai-yi. Research situation for Al-based sintered oil-bearing[J]. Powder Metallurgy Technology, 2020, 38(1): 74-78. doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.011

铝基烧结含油轴承研究现状

doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.011
基金项目: 

四川省科技计划资助项目 2014GZ0088

四川省教育厅自然科学重大培育项目资助项目 16201452

详细信息
    通讯作者:

    查五生, E-mail: 1434758301@qq.com

  • 中图分类号: TG146.2+1

Research situation for Al-based sintered oil-bearing

More Information
  • 摘要: 综述了铝基烧结含油轴承的发展与研究现状, 讨论了铝基烧结含油轴承制备的难点以及优化措施, 展望了铝基烧结含油轴承的发展方向。研究表明, 采用适当的烧结工艺, 可以促使铝合金粉末的烧结成形, 同时, 添加适量的合金化元素形成强化相, 能够有效提高铝基烧结含油轴承的强度, 制备的铝基烧结含油轴承具有工程实用价值。可按需制备不同组元的铝基烧结含油轴承, 通过优化烧结工艺参数, 选择适当的烧结气氛, 得到符合实际工程需要的铝基烧结含油轴承。此外, 提高烧结含油轴承的耐磨性, 开发轻质烧结含油轴承也是未来烧结含油轴承的重要发展方向。
  • 表  1  不同烧结温度下烧结坯的含油率与压溃强度[10]

    Table  1.   Oil content and crushing strength of sintered samples at different sintering temperatures[10]

    烧结温度/℃ 含油率/% 压溃强度/MPa
    520 28 78
    530 25 92
    540 23 136
    550 22 198
    560 15 189
    570 13 178
    下载: 导出CSV

    表  2  不同铜含量烧结材料的抗压强度和优化烧结温度[24]

    Table  2.   Compression strength and optimized sintering temperatures of sintered blocks with different copper content[24]

    铜的质量分数/% 抗压强度/MPa 优化烧结温度/℃
    2.5 205 610
    5.0 239 570
    7.5 370 555
    10.0 352 540
    15.0 287 530
    20.0 118 525
    下载: 导出CSV

    表  3  不同合金试样的含油率和压溃强度[28]

    Table  3.   Oil content and crushing strength of different alloy specimens[28]

    合金配比(质量分数)/% 含油率/% 压溃强度/MPa
    Al-7.5Cu 18.4 145.6
    Al-7.5Cu-1.0Si 10.8 196.2
    Al-7.5Cu-1.5Mg 22.8 158.3
    Al-7.5Cu-1.0Si-1.5Mg 18.7 226.0
    下载: 导出CSV
  • [1] Wei X X, Tang Q F, Cai G Y. The Preparation Method for High Zn and Al-Based Sintered Oil Bearing: China Patent, 201410001760. 2015-7-8

    魏晓伟, 唐祁峰, 蔡光勇. 烧结高锌铝基含油轴承及其制备方法: 中国专利, 201410001760. 2015-7-8
    [2] Jia C C. Sintering metal oil bearing. Met World, 2011(1): 28 doi: 10.3969/j.issn.1000-6826.2011.01.009

    贾成厂. 烧结金属含油轴承. 金属世界, 2011(1): 28 doi: 10.3969/j.issn.1000-6826.2011.01.009
    [3] Dong X J, Wang L M, Zhang J H, et al. Influence of morphology of different partially alloyed CuSn10 powders on the sintering character of self-lubricated bearings. Powder Metall Ind, 2010, 20(4): 28 doi: 10.3969/j.issn.1006-6543.2010.04.007

    董小江, 汪礼敏, 张景怀, 等. 不同形貌部分合金化CuSn10粉末对含油轴承烧结性能的影响. 粉末冶金工业, 2010, 20(4): 28 doi: 10.3969/j.issn.1006-6543.2010.04.007
    [4] Teruhisa W. Porous sintered bearing. Powder Metall Technol, 2002, 20(3): 121 doi: 10.3321/j.issn:1001-3784.2002.03.001

    渡辺侊尚. 烧结含油轴承. 粉末冶金技术, 2002, 20(3): 121 doi: 10.3321/j.issn:1001-3784.2002.03.001
    [5] Torralba J M, Da Costa C E, Velasco F. P/M aluminum matrix composites: an overview. J Mater Process Technol, 2003, 133(1-2): 203 doi: 10.1016/S0924-0136(02)00234-0
    [6] Liu G H, Zha W S, Lan J, et al. Preparation of aluminum alloy block materials by powder metallurgy. Light Met, 2007(3): 56 doi: 10.3969/j.issn.1002-1752.2007.03.015

    刘改华, 查五生, 兰军, 等. 粉末冶金法制备铝合金块体材料的研究. 轻金属, 2007(3): 56 doi: 10.3969/j.issn.1002-1752.2007.03.015
    [7] Han F L, Jia C C. Sintering Metal Oil Bearing. Beijing: Chemical Industry Press, 2004

    韩凤麟, 贾成厂. 烧结金属含油轴承. 北京: 化学工业出版社, 2004
    [8] Dunnett K S, Mueller R M, Bishop D P. Development of Al–Ni–Mg–(Cu) aluminum P/M alloys. J Mater Process Technol, 2008, 198(1-3): 31 doi: 10.1016/j.jmatprotec.2007.06.072
    [9] Gökçe A, Findik F, Kurt A O. Effects of sintering temperature and time on the properties of Al–Cu PM alloy. Pract Metall, 2017, 54(8): 533 doi: 10.3139/147.110461
    [10] An X G, Zha W S, Lei Y, et al. Effect of sintering temperature on crushing strength, oil content and microstructure of Al–Cu oil bearing. Powder Metall Technol, 2012, 30(2): 108 doi: 10.3969/j.issn.1001-3784.2012.02.005

    安旭光, 查五生, 雷宇, 等. 烧结温度对Al–Cu系含油轴承压溃强度、含油率和微观形貌的影响. 粉末冶金技术, 2012, 30(2): 108 doi: 10.3969/j.issn.1001-3784.2012.02.005
    [11] Yan J, Zha W S, Zhang G Y. Research on the optimum sintering process of Al-based oil bearing in N2 atmosphere. Powder Metall Technol, 2018, 36(3): 211 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.009

    严峻, 査五生, 张桂银. 氮气保护下铝基烧结含油轴承烧结工艺优化研究. 粉末冶金技术, 2018, 36(3): 211 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.009
    [12] Su S S, Chang I T H, Kuo W C H. Effects of processing conditions on the sintering response of hypereutectic Al–Si–Cu–Mg P/M alloys. Mater Chem Phys, 2013, 139(2-3): 775 doi: 10.1016/j.matchemphys.2013.02.031
    [13] Schaffer G B, Hall B J, Bonner S J, et al. The effect of the atmosphere and the role of pore filling on the sintering of aluminum. Acta Mater, 2006, 54(1): 131 http://www.sciencedirect.com/science/article/pii/S1359645405005069
    [14] Dang W L, Wang L M, Yang Z L, et al. Effect of sintering atmosphere and temperature on performance of P/M Al–Cu–Mg–Si alloy. Mater Sci Eng Powder Metall, 2014, 19(6): 921 doi: 10.3969/j.issn.1673-0224.2014.06.013

    党文龙, 汪礼敏, 杨振亮, 等. 烧结气氛与温度对Al–Cu–Mg–Si合金性能的影响. 粉末冶金材料科学与工程, 2014, 19(6): 921 doi: 10.3969/j.issn.1673-0224.2014.06.013
    [15] Schaffer G B, Hall B J. The influence of the atmosphere on the sintering of aluminum. Metall Mater Trans A, 2002, 33(10): 3279 doi: 10.1007/s11661-002-0314-z
    [16] Yan J. Investigation of Preparation Process for Al-Based Sintered Oil Bearing in Nitrogen Environment [Dissertation]. Chengdu: Xihua University, 2018

    严峻. 氮气气氛下铝基烧结含油轴承制备工艺研究[学位论文]. 成都: 西华大学, 2018
    [17] Teruhisa W. Aluminum based oil-impregnated sintered bearing. Powder Metall Technol, 2004, 22(2): 76 doi: 10.3321/j.issn:1001-3784.2004.02.003

    渡辺侊尚. 烧结铝基含油轴承. 粉末冶金技术, 2004, 22(2): 76 doi: 10.3321/j.issn:1001-3784.2004.02.003
    [18] Liu X J, Fan Y, Zhang J S. Preparation of Al-base sintered oil bearing. Hunan Metall, 1995(4): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI504.004.htm

    刘先交, 樊毅, 张金生. 铝基烧结含油轴承的制取. 湖南冶金, 1995(4): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI504.004.htm
    [19] Zhou X W, Ward D K, Foster M E. An analytical bond-order potential for the aluminum copper binary system. J Alloys Compd, 2016, 680: 752 doi: 10.1016/j.jallcom.2016.04.055
    [20] Schaffer G B, Sercombe T B, Lumley R N. Liquid phase sintering of aluminum alloys. Mater Chem Phys, 2001, 67(1-3): 85 doi: 10.1016/S0254-0584(00)00424-7
    [21] Huang P Y. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 2008

    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2008
    [22] Prados E F, Sordi V L, Ferrante M. The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behavior of a Al–4 wt% Cu alloy processed by equal-channel angular pressing. Acta Mater, 2013, 61(1): 115 doi: 10.1016/j.actamat.2012.09.038
    [23] Song Y, Zhang X Q, Lu Q X, et al. Effect of copper content on properties of aluminum based sintered oiled bearing. Hot Work Technol, 2016, 45(22): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201622029.htm

    宋羽, 张修庆, 陆钦鑫, 等. 铜含量对铝基烧结含油轴承性能的影响. 热加工工艺, 2016, 45(22): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201622029.htm
    [24] Hu S L, Zha W S, Jia Y C. Effect of the copper content on Al–Cu sintered materials. Sichuan Nonferrous Met, 2010(4): 24 doi: 10.3969/j.issn.1006-4079.2010.04.006

    胡绍磊, 查五生, 贾永灿. 铜含量对铝铜烧结材料性能影响. 四川有色金属, 2010(4): 24 doi: 10.3969/j.issn.1006-4079.2010.04.006
    [25] Menzermer C C, Ortize-Morgad R, Iascone R, et al. An investigation of the bearing strength of three aluminum alloys. Mater Sci Eng A, 2002, 327(2): 203 doi: 10.1016/S0921-5093(01)01534-9
    [26] Elsharkawy S G, Awad R. Thermal expansion measurements of (Cu0.25T10.75)-1234 added by MgO-nano particles. J Alloy Compd, 2009, 478(1-2): 642 doi: 10.1016/j.jallcom.2008.11.120
    [27] Gökçe A, Findik F, Kurt A O. Effects of Mg content on aging behavior of Al4CuXMg PM alloy. Mater Des, 2013, 46: 524 doi: 10.1016/j.matdes.2012.10.045
    [28] Zha W S, An X G, Chen L J, et al. Effect of Si and Mg additions on crushing strength and oil content of Al–Cu oil bearing. Light Alloy Fabr Technol, 2015, 43(6): 67 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201506021.htm

    査五生, 安旭光, 陈立甲, 等. Si和Mg对Al–Cu系合金含油轴承压溃强度与含油率的影响. 轻合金加工技术, 2015, 43(6): 67 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201506021.htm
    [29] Xue L H, Zhang X Q, Pu H Z, et al. Effect of silicon and magnesium content on properties of Al–Cu oiled bearing. Hot Work Technol, 2017, 46(16): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201716020.htm

    薛玲华, 张修庆, 浦海洲, 等. 硅镁含量对铝铜烧结含油轴承性能的影响. 热加工工艺, 2017, 46(16): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201716020.htm
    [30] MacAskill I A, Heard D W, Bishop D P. Effects of silicon on the metallurgy and sintering response of Al–Ni–Mg PM alloys. Mater Sci Eng A, 2007, 452-453: 688 doi: 10.1016/j.msea.2006.11.038
  • 加载中
计量
  • 文章访问数:  332
  • HTML全文浏览量:  118
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 刊出日期:  2020-02-27

目录

    /

    返回文章
    返回