基于逆向设计思想的低速重载轴承用铜基粉末合金的设计

邓正华 尹海清 李万全 吴恒斌 张国飞 刘国权 曲选辉

邓正华, 尹海清, 李万全, 吴恒斌, 张国飞, 刘国权, 曲选辉. 基于逆向设计思想的低速重载轴承用铜基粉末合金的设计[J]. 粉末冶金技术, 2020, 38(2): 83-91, 97. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.001
引用本文: 邓正华, 尹海清, 李万全, 吴恒斌, 张国飞, 刘国权, 曲选辉. 基于逆向设计思想的低速重载轴承用铜基粉末合金的设计[J]. 粉末冶金技术, 2020, 38(2): 83-91, 97. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.001
DENG Zheng-hua, YIN Hai-qing, LI Wan-quan, WU Heng-bin, ZHANG Guo-fei, LIU Guo-quan, QU Xuan-hui. Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology[J]. Powder Metallurgy Technology, 2020, 38(2): 83-91, 97. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.001
Citation: DENG Zheng-hua, YIN Hai-qing, LI Wan-quan, WU Heng-bin, ZHANG Guo-fei, LIU Guo-quan, QU Xuan-hui. Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology[J]. Powder Metallurgy Technology, 2020, 38(2): 83-91, 97. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.001

基于逆向设计思想的低速重载轴承用铜基粉末合金的设计

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.001
基金项目: 

国家重点研发计划资助项目 2016YFB0700503

国家自然科学基金资助项目 51172018

国家高技术研究发展计划(863计划)资助项目 2015AA034201

北京市科技计划资助项目 D161100002416001

重庆市教委科学技术研究项目 KJQN201801202

详细信息
    通讯作者:

    尹海清, E-mail:hqyin@ustb.edu.cn

  • 中图分类号: TG146.1+1

Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology

More Information
  • 摘要: 基于需求导向, 采用逆向设计思想设计和开发了低速重载轴承用材料。首先, 利用有限元分析方法对低速重载滑动轴承服役条件进行分析, 获得了该服役条件下对材料性能的需求; 然后, 依据性能需求指标, 通过Ashby法绘制材料性能图, 并对各种可用材料进行比较和筛选, 确定Cu12Al6Ni5Fe铜基合金作为轴承材料; 最后, 采用粉末冶金法制备Cu12Al6Ni5Fe合金, 获得的合金强度为340MPa, 硬度HB 138, 达到了预期目标, 并通过对合金显微组织的分析, 提出了进一步改进思路。
  • 图  1  滑动轴承转动过程受力分析:(a)第二主应力;(b)第三主应力

    Figure  1.  Force analysis of sliding bearing during rotation: (a) secondary principal stress; (b) third principal stress

    图  2  滑动轴承静止状态受力分析

    Figure  2.  Force analysis of sliding bearing in static state

    图  3  部分材料性能及价格图:(a)滑动摩擦系数与归一化磨损率常数;(b)线性膨胀系数与导热系数;(c)断裂韧性与强度;(d)材料与硬度;(e)材料与价格

    Figure  3.  Properties and price maps of some materials: (a) coefficient of sliding friction and normalized wear rate; (b) thermal diffusivity and thermal conductivity; (c) fracture toughness and strength; (d) material and hardness; (e) material and price

    图  4  铜合金性能和在无润滑条件下铜合金的摩擦系数:(a)屈服强度与硬度;(b)摩擦系数

    Figure  4.  Properties and friction coefficient without lubrication of copper alloys: (a) yield strength and hardness; (b) friction coefficient

    图  5  铝质量分数对Cu–Al合金性能的影响:(a)硬度;(b)抗拉强度

    Figure  5.  Effect of aluminum mass fraction on the properties of Cu‒Al alloy: (a) hardness; (b) tensile strength

    图  6  原料粉末颗粒的形态:(a)Cu;(b)Al;(c)Ni;(d)Fe

    Figure  6.  Morphology of the as-received elemental powders: (a) Cu; (b) Al; (c) Ni; (d) Fe

    图  7  Cu12Al6Ni5Fe合金的金相微观结构

    Figure  7.  Metallographic microstructure of Cu12Al6Ni5Fe alloys

    图  8  Cu12Al6Ni5Fe合金扫描电子显微形貌:(a)二次电子图;(b)局部放大图

    Figure  8.  SEM images of Cu12Al6Ni5Fe alloys: (a) secondary electron image; (b) enlarged image

    图  9  Cu12Al6Ni5Fe合金的拉伸强度

    Figure  9.  Tensile strength curves of Cu12Al6Ni5Fe alloys

    表  1  滑动轴承服役需求参数

    Table  1.   Demand parameters of bearing service

    轴套尺寸/ mm 面压/ MPa 滑动速度/ (m·min-1) 试验时间/ h 磨损量/ mm 硬度,HB
    外径50,内径40,长30 80 < 1 60 <0.05 125~175
    下载: 导出CSV

    表  2  常温下合金元素在铜中最大固溶度时晶格常数[20]

    Table  2.   Lattice constants at the maximum solid solubility of alloying elements in copper at room temperature

    固溶元素 最大固溶度(原子数分数)/ % 晶格常数(最大固溶度)/ nm
    Sn 0 3.6074
    Mg 3.13 3.6345
    Mn 4.50 3.6200
    Cr 0 3.6074
    Al 19.00 3.6563
    Zn 38.00 3.6930
    Fe 0 3.6074
    Si 8.30 3.6131
    下载: 导出CSV

    表  3  部分金属间化合物的硬度

    Table  3.   Hardness of some intermetallic compounds

    序号 化合物 硬度, HV
    1 Fe3Al ≥700.0[32]
    2 NiAl 367.5[33]
    3 Cu2Mg 385.0~538.0[34]
    4 TiCu4 600.0~700.0[35]
    5 Cu3Sn 634.0[36]
    6 Cu6Sn5 645.0[36]
    7 Cu5Si 149.7[37]
    8 CuZn 472.0[38]
    9 Cu51Zr14 515.0[39]
    下载: 导出CSV

    表  4  合金元素对铝青铜组织和性能的影响[40]

    Table  4.   Effect of alloying elements on the microstructure and properties of aluminum bronze[40]

    合金元素 组织 性能
    Fe 减缓共析转变,形成Fe3Al作为结晶核心,细化晶粒 提高强度、硬度、疲劳极限和耐磨性,过量的Fe则降低耐蚀性
    Mn 缩小α相区,稳定β相,含量高时共析转变温度降到室温以下 提高强度、韧性和耐蚀性
    Ni 扩大α相转变温度,提高共析细化晶粒,形成强化相 提高强度、硬度、耐磨耐蚀性和热稳定性
    Zn 溶入α固溶体,减少镍铝青铜中铁微粒的数量 降低耐磨性、耐蚀性和塑性
    Sn 少量溶入固溶体,扩大β相区 提高硬度、耐蚀性和防污能力,降低塑性
    Cr 形成化合物 提高硬度、降低塑性阻止退火时晶粒长大
    Pb 以游离态存在 降低塑性和韧性
    P 形成磷化物 降低塑性和韧性
    下载: 导出CSV

    表  5  Cu12Al6Ni5Fe合金中各相的能谱分析(质量分数)

    Table  5.   EDS analysis of each phase in Cu12Al6Ni5Fe alloy %

    相组成 Cu Al Ni Fe
    α 82.47 10.82 4.74 1.97
    KI 5.07 7.97 6.18 80.78
    KII 46.39 12.77 5.37 35.47
    NiAl 43.36 22.91 27.42 6.31
    γ2 73.92 16.82 7.25 2.02
    下载: 导出CSV
  • [1] Yan J, Zha W S, Zhang G Y. Research on the optimum sintering process of Al-based oil bearing in N2 atmosphere. Powder Metall Technol, 2018, 36(3): 211 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803009.htm

    严峻, 査五生, 张桂银. 氮气保护下铝基烧结含油轴承烧结工艺优化研究. 粉末冶金技术, 2018, 36(3): 211 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803009.htm
    [2] Wu W Y, Hu J H, Zhou T, et al. Experimental study on friction properties of sliding bearing under low speed and heavy load conditions. Bearing, 2016(4): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201604009.htm

    吴汪洋, 胡军华, 周涛, 等. 低速重载滑动轴承摩擦性能试验研究. 轴承, 2016(4): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201604009.htm
    [3] Cheng D X. Handbook of Mechanical Design: Separate Edition, Bearing. Beijing: Chemical Industry Press, 2017

    成大先. 机械设计手册: 单行本, 轴承. 北京: 化学工业出版社, 2017
    [4] Kuang F M, Zhou X C, Huang J, et al. Tribological properties of nitrile rubber/UHMWPE/Nano-MoS2 water-lubricated bearing material under low speed and heavy duty. J Tribol, 2018, 140(6): 061301 doi: 10.1115/1.4039930
    [5] Mitani H, Yokota M. Some mechanical properties of aluminium bronze sintered compacts. J Jpn Soc Powder Powder Metall, 1973, 20(4): 107 doi: 10.2497/jjspm.20.107
    [6] Li Y Y, Xia W, Zhang W, et al. Strong and wear-resistant aluminum-bronze alloy and its tribological characteristics. Chin J Nonferrous Met, 1996, 6(3): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ603.019.htm

    李元元, 夏伟, 张文, 等. 高强度耐磨铝青铜合金及其摩擦学特性. 中国有色金属学报, 1996, 6(3): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ603.019.htm
    [7] Lu Y, Jin W X, Li W S, et al. Effect of Fe on wear-friction properties of high aluminum bronze. Mater Rev, 2008, 22(2): 135 doi: 10.3321/j.issn:1005-023X.2008.02.038

    路阳, 金硪馨, 李文生, 等. Fe对高铝青铜摩擦磨损性能的影响. 材料导报, 2008, 22(2): 135 doi: 10.3321/j.issn:1005-023X.2008.02.038
    [8] Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. Chin J Rare Met, 2017, 41(9): 985 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201709006.htm

    李雨蔚, 肖来荣, 章玮, 等. 不同Mn含量的铝青铜合金组织与性能. 稀有金属, 2017, 41(9): 985 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201709006.htm
    [9] Zhang Y Y, Gao W G, Chen S Y, et al. Inverse design of materials by multi-objective differential evolution. Comput Mater Sci, 2015, 98: 51 doi: 10.1016/j.commatsci.2014.10.054
    [10] Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 2018, 555(7698): 604 doi: 10.1038/nature25978
    [11] Johnson L, Arróyave R. An inverse design framework for prescribing precipitation heat treatments from a target microstructure. Mater Des, 2016, 107: 7 doi: 10.1016/j.matdes.2016.06.009
    [12] Chang A M, Rudshteyn B, Warnke I, et al. Inverse design of a catalyst for aqueous CO/CO2 conversion informed by the NiII-iminothiolate complex. Inorg Chem, 2018, 57(24): 15474 doi: 10.1021/acs.inorgchem.8b02799
    [13] Perkins J D, Paudel T R, Zakutayev A, et al. Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels. Phys Rev B, 2011, 84(20): 205207 doi: 10.1103/PhysRevB.84.205207
    [14] Prashant Reddy G, Gupta N. Material selection for microelectronic heat sinks: An application of the Ashby approach. Mater Des, 2010, 31(1): 113 doi: 10.1016/j.matdes.2009.07.013
    [15] Oliveira M C L D, Ett G, Antunes R A. Materials selection for bipolar plates for polymer electrolyte membrane fuel cells using the Ashby approach. J Power Sources, 2012, 206(1): 3 http://www.sciencedirect.com/science/article/pii/S0378775312002054
    [16] Mehmood Z, Haneef I, Udrea F. Material selection for Micro-Electro-Mechanical-Systems (MEMS) using Ashby's approach. Mater Des, 2018, 157: 412 doi: 10.1016/j.matdes.2018.07.058
    [17] Bonthu M K, Sharma A K. An investigation of dielectric material selection of RF-MEMS switches using Ashby's methodology for RF applications. Microsyst Technol, 2018, 24(4): 1803 doi: 10.1007/s00542-017-3539-x
    [18] Liu X Y, Bai X R, Jia J Y, et al. Materials selection of flexure accelerometer using Ashby chart. J Mech Eng, 2013, 49(21): 148 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201321018.htm

    刘小院, 白晓荣, 贾建援, 等. 基于Ashby图的挠性加速度计材料选择. 机械工程学报, 2013, 49(21): 148 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201321018.htm
    [19] Ashby M F. Materials Selection in Mechanical Design. Oxford: Butterworth-Heinemann, 2009
    [20] Pearson W B. A Handbook of Lattice Spacings and Structures of Metals and Alloys. New York: Pergamon, 1958
    [21] Wang B W, Wang T, Wang Z T. Copper Alloy and Its Processing Technology. Beijing: Chemical Industry Press, 2007

    王碧文, 王涛, 王祝堂. 铜合金及其加工技术. 北京: 化学工业出版社, 2007
    [22] Liu P, Ren F Z, Jia S G. Copper Alloy and Its Application. Beijing: Chemical Industry Press, 2007

    刘平, 任凤章, 贾淑果. 铜合金及其应用. 北京: 化学工业出版社, 2007
    [23] Wan H, Si N C, Liu G L, et al. Effect of rare earth on abrasion resistance of multi-aluminum bronze. Chin Rare Earth, 2015, 36(4): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504014.htm

    万浩, 司乃潮, 刘光磊, 等. 稀土对新型多元铝青铜磨损行为的影响. 稀土, 2015, 36(4): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504014.htm
    [24] Lahiri B B, Sarkar A, Subramainam B, et al. Studies on temperature evolution during fatigue cycling of Ni-Al-bronze (NAB) alloy using infrared thermography. Insight Nondestr Test Cond Monit, 2016, 58(2): 70 doi: 10.1784/insi.2016.58.2.70
    [25] Thossatheppitak B, Suranuntchai S, Uthaisangsuk V, et al. Mechanical properties at high temperatures and microstructures of a nickel aluminum bronze alloy. Adv Mater Res, 2013, 683: 8 http://www.scientific.net/AMR.683.82
    [26] Anantapong J, Uthaisangsuk V, Suranuntchai S, et al. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy. Mater Des, 2014, 60(8): 233 http://www.sciencedirect.com/science/article/pii/S026130691400226X
    [27] Wang J H, Jiang X X, Li S Z. Microstructure and properties of boron-modified aluminum bronze. Acta Metall Sinica, 1996, 32(10): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB610.006.htm

    王吉会, 姜晓霞, 李诗卓. 加硼铝青铜的组织和性能. 金属学报, 1996, 32(10): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB610.006.htm
    [28] Yang F F, Kang H J, Guo E Y, et al. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt% NaCl solution. Corros Sci, 2018, 139: 333 doi: 10.1016/j.corsci.2018.05.012
    [29] Dai A L, Yan G C, Zhu Z Y, et al. Wear-friction behavior of novel high aluminum bronzes alloy Cu-12Al-X in high temperature condition. Chin J Nonferrous Met, 2013, 23(11): 3083 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201311009.htm

    戴安伦, 严高闯, 朱治愿, 等. 新型高铝青铜合金Cu-12Al-X在高温下的摩擦磨损行为. 中国有色金属学报, 2013, 23(11): 3083 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201311009.htm
    [30] Li W S, Wang Z P, Lu Y, et al. Mechanical and tribological properties of a novel aluminum bronze material for drawing dies. Wear, 2006, 261(2): 155 doi: 10.1016/j.wear.2005.09.032
    [31] Xu J L, Wang Z P, Chen C, et al. Research into a new high-strength aluminium bronze alloy. Int J Mater Prod Technol, 2004, 21(5): 443 doi: 10.1504/IJMPT.2004.005001
    [32] Li Y Y, Ngai T L. Grain refinement and microstructural effects on mechanical and tribological behaviours of Ti and B modified aluminium bronze. J Mater Sci, 1996, 31(20): 5333 doi: 10.1007/BF01159301
    [33] Ozdemir O, Zeytin S, Bindal C. Characterization of NiAl with cobalt produced by combustion synthesis. J Alloys Compd, 2010, 508(1): 216 doi: 10.1016/j.jallcom.2010.08.056
    [34] Du S M, Liu G, Wang M J. Microstructure and properties of transient liquidphase diffusion bonded joint of AZ31B/Cu dissimilar metal. Chin J Nonferrous Met, 2013, 23(5): 1255 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305011.htm

    杜双明, 刘刚, 王明静. AZ31B/Cu异种金属过渡液相扩散焊接头的显微组织及性能. 中国有色金属学报, 2013, 23(5): 1255 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305011.htm
    [35] Yuan Q L, Chi C Z, Su Y A, et al. Investigation on the formation and properties of titanizing layer made by double glow discharge process on the surface of pure Cu. J Chin Electron Microsc Soc, 2004, 23(2): 163 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV200402015.htm

    袁庆龙, 池承忠, 苏永安, 等. 纯铜双层辉光离子渗钛组织形成机理及性能分析. 电子显微学报, 2004, 23(2): 163 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV200402015.htm
    [36] Yang P F, Lai Y S, Jian S R, et al. Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4, intermetallic compounds derived by diffusion couples. Mater Sci Eng A, 2008, 485(1): 305
    [37] Lu Y H. Fabrication and Properties of C/C-SiC-Cu5Si Composites[Dissertation]. Changsha: Central South University, 2013

    逯雨海. C/C-SiC-Cu5Si复合材料的制备及性能[学位论文]. 长沙: 中南大学, 2013
    [38] Song K X, Zhang Y, Zhang Y M, et al. Research on fabrication of Cu/Zn compound materials by solid-liquid bonding method under the condition of pressure. Mater Rev, 2014, 28(10): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201410006.htm

    宋克兴, 张亚, 张彦敏, 等. 压力条件下固-液复合法制备铜/锌复合材料的研究. 材料导报, 2014, 28(10): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201410006.htm
    [39] Glimois J L, Forey P, Feron J L. Structural studies and physics of copper-rich alloys in the Cu-Zr system. J Less-Comm Met, 1985, 113(2): 213 doi: 10.1016/0022-5088(85)90279-6
    [40] United editing group of Cast Nonferrous Alloys and Melting. Cast Nonferrous Alloys and Melting. Beijing: National Defense Industry Press, 1980

    《铸造有色合金及其熔炼》联合编写组编. 铸造有色合金及其熔炼. 北京: 国防工作工业出版社, 1980
    [41] Brezina P. Heat treatment of complex aluminium bronzes. Int Met Rev, 1982, 27(1): 77 doi: 10.1179/imr.1982.27.1.77
    [42] Lloyd D M, Lorimer G W, Ridley N. Characterization of phases in a nickel-aluminium bronze. Met Technol, 1980, 7(1): 114 doi: 10.1179/030716980803286577
    [43] Han F L, Jia C C. Sintered Metal Oil Bearing: Principle, Design, Manufacture and Application. Beijing: Chemical Industry Press, 2004

    韩凤麟, 贾成厂. 烧结金属含油轴承: 原理、设计、制造与应用. 北京: 化学工业出版社, 2004
    [44] Veloff N, Nadkarni A, Murphy T, et al. High performance bronze powders for self lubricated bearings. Powder Metall Technol, 2007, 25(5): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200705016.htm

    Veloff N, Nadkarni A, Murphy T, 等. 制造烧结金属含油轴承的高性能青铜粉. 粉末冶金技术, 2007, 25(5): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200705016.htm
    [45] An X G, Zha W S, Lei Y, et al. Effect of sintering temperature on crushing strength, oil content and microstructure of Al-Cu oil bearing. Powder Metall Technol, 2012, 30(2): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201202007.htm

    安旭光, 查五生, 雷宇, 等. 烧结温度对Al-Cu系含油轴承压溃强度、含油率和微观形貌的影响. 粉末冶金技术, 2012, 30(2): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201202007.htm
    [46] Deng Z H, Yin H Q, Jiang X, et al. Machine learning aided study of sintered density in Cu-Al alloy. Comput Mater Sci, 2018, 155: 48 doi: 10.1016/j.commatsci.2018.07.049
    [47] Lü Y T, Wang L Q, Mao J W, et al. Recent advances of nickel-aluminum bronze (NAB). Rare Met Mater Eng, 2016, 45(3): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603050.htm

    吕玉廷, 王立强, 毛建伟, 等. 镍铝青铜合金(NAB)的研究进展. 稀有金属材料与工程, 2016, 45(3): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603050.htm
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  169
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回