一步水热法合成3D花状CoS锂离子电池负极材料的组织及电化学性能研究

李宗峰 董桂霞 亢静锐 李雷

李宗峰, 董桂霞, 亢静锐, 李雷. 一步水热法合成3D花状CoS锂离子电池负极材料的组织及电化学性能研究[J]. 粉末冶金技术, 2020, 38(2): 98-103, 112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.003
引用本文: 李宗峰, 董桂霞, 亢静锐, 李雷. 一步水热法合成3D花状CoS锂离子电池负极材料的组织及电化学性能研究[J]. 粉末冶金技术, 2020, 38(2): 98-103, 112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.003
LI Zong-feng, DONG Gui-xia, KANG Jing-rui, LI Lei. Microstructure and electrochemical properties of 3D flower-like CoS anode materials used for lithium ion batteries synthesized by one-step hydrothermal method[J]. Powder Metallurgy Technology, 2020, 38(2): 98-103, 112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.003
Citation: LI Zong-feng, DONG Gui-xia, KANG Jing-rui, LI Lei. Microstructure and electrochemical properties of 3D flower-like CoS anode materials used for lithium ion batteries synthesized by one-step hydrothermal method[J]. Powder Metallurgy Technology, 2020, 38(2): 98-103, 112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.003

一步水热法合成3D花状CoS锂离子电池负极材料的组织及电化学性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.003
详细信息
    通讯作者:

    董桂霞, E-mail:Dongguixia199@163.com

  • 中图分类号: TQ138.1+2

Microstructure and electrochemical properties of 3D flower-like CoS anode materials used for lithium ion batteries synthesized by one-step hydrothermal method

More Information
  • 摘要: 以CoCl2·6H2O和硫脲(CH4N2S)为原料, 采用一步水热法, 通过改变钴硫摩尔比和添加表面活性剂制备出两种不同形貌(3D花状和球状)的硫化钴(CoS)锂离子电池负极材料。结果表明, 当钴硫摩尔比为1:1时, 在180℃下水热反应12 h可得到3D花状CoS负极材料, 其三维立体花状结构由纳米级层片组成; 当钴硫摩尔配比为1:1, 添加十六烷基三甲基溴化铵(CTAB), 在180℃下反应12 h可制得由小颗粒聚结成的球状CoS负极材料。在0.1C电流密度下, 3D花状CoS电池首次放电比容量为752 mAh·g-1, 并且具有良好的倍率性能; 在1C电流密度下, 经过200圈的循环测试后, 3D花状CoS电池仍有较高的放电比容量(185 mAh·g-1), 远高于球状CoS电池(118.6 mAh·g -1), 并且没有衰减的趋势。
  • 图  1  花状和球状硫化钴试样X射线衍射图谱

    Figure  1.  XRD spectra of flower-like and spherical cobalt sulfide samples

    图  2  花状和球状硫化钴试样显微形貌:(a)和(b)花状-1:1;(c)和(d)花状-1:2;(e)和(f)球状-1:1;(g)高倍率花状-1:1

    Figure  2.  SEM images of flower-like and spherical cobalt sulfide samples: (a) and (b) flower-like sample-1:1; (c) and (d) flower-like sample-1:2; (e) and (f) spherical sample-1:1; (g) higher magnification of flower-like sample-1:1

    图  3  不同硫化钴样品的N2吸附‒脱附等温线(a)和孔径分布(b)

    Figure  3.  N2 desorption‒sorption isotherms (a) and pore distribution (b) of different cobalt sulfide samples

    图  4  硫化钴电极材料倍率性能图

    Figure  4.  Specifc discharge capacities at various current rates of cobalt sulfide electrode materials

    图  5  CoS负极材料循环伏安曲线:(a)0.5 mV·s‒1,CoS负极材料;(b)0.1~10 mV·s-1扫速,花状-1:1试样

    Figure  5.  CV curves of CoS electrode materials: (a) CoS electrode materials at 0.5 mV·s‒1; (b) flower-like sample-1:1 at the scan rates ranging from 0.1 to 10 mV·s‒1

    图  6  CoS电极材料在0.1C的电流密度下首次充放电的电化学性能图

    Figure  6.  Electrochemical performance of initial charge–discharge curves at 0.1C of CoS electrode materials

    图  7  CoS电极材料的交流阻抗图

    Figure  7.  Electrochemical impedance spectra of CoS electrode materials

    图  8  CoS电极材料在1C的电流密度下从0.05~3.0 V循坏性能曲线

    Figure  8.  Cycling performance curves of CoS electrode materials at 1C from 0.05 V to 3.0 V

    表  1  硫化钴样品的比表面积和孔体积数值

    Table  1.   Specific surface area and pore volume of cobalt sulfide samples

    试样 比表面积/ (m2·g‒1) 孔体积/ (mL·g‒1)
    花状-1:1 15.3611 0.0593
    花状-1:2 6.2693 0.0364
    球状-1:1 4.1639 0.0180
    下载: 导出CSV

    表  2  CoS电极材料阻抗参数

    Table  2.   Impedance parameters of CoS electrode materials

    试样 欧姆电阻/ Ω 传荷电阻/ Ω 阻抗总和/ Ω
    花状-1:1 1.75 175.12 176.87
    球状-1:1 9.17 377.67 386.84
    花状-1:2 1.82 242.73 244.55
    下载: 导出CSV
  • [1] Pasquariello D M, Kershaw R, Passaretti J D, et al. Low-temperature synthesis and properties of cobalt sulfide (Co9S8), nickel sulfide (Ni3S2), and iron sulfide (Fe7S8). Prep Inorg Chem, 1984, 15(25): 872 doi: 10.1002/chin.198425040
    [2] Yuan C Z, Gao B, Su L H, et al. Electrochemically induced phase transformation and charge-storage mechanism of amorphous CoSx nanoparticles prepared by interface-hydrothermal method. J Electrochem Soc, 2009, 156(3): A199 doi: 10.1149/1.3065086
    [3] Bao S J, Li Y B, Li C M, et al. Shape evolution and magnetic properties of cobalt sulfide. Cryst Growth Des, 2008, 8(10): 3745 doi: 10.1021/cg800381e
    [4] Liu S M. Synthesis and Electrochemical Properties of Transition Metal Sulfides and their Composite Materials[Dissertation]. Changchun: Changchun University of Science and Technology, 2014

    刘淑敏. 过渡金属硫化物及其复合材料的合成和电化学性能研究[学位论文]. 长春: 长春理工大学, 2014
    [5] Wang Y M, Wu J J, Tang Y F, et al. Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(8): 4246 doi: 10.1021/am300951f
    [6] Han W C. Composites of Graphene and Transition Metal Sulfides as Anode Materials for Lithium Ion Batteries[Dissertation]. Wuhu: Anhwei Normal University, 2016

    韩超伟. 石墨烯复合过渡金属硫化物作为锂离子电池负极材料的研究[学位论文]. 芜湖: 安徽师范大学, 2016
    [7] Zhang C F, Wu H B, Guo Z P, et al. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem Commun, 2012, 20: 7 doi: 10.1016/j.elecom.2012.03.039
    [8] Zhou Y L, Yan D, Xu H Y, et al. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale, 2015, 7(8): 3520 doi: 10.1039/C4NR07143C
    [9] Débart A, Dupont L, Patrice R, et al. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci, 2006, 8(6): 640 doi: 10.1016/j.solidstatesciences.2006.01.013
    [10] Wang J, Ng S H, Wang G X, et al. Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. J Power Sources, 2006, 159(1): 287 doi: 10.1016/j.jpowsour.2006.04.092
    [11] Gómez-Cámer J L, Martin F, Morales J, et al. Precipitation of CoS vs ceramic synthesis for improved performance in lithium cells. J Electrochem Soc, 2008, 155(3): A189 doi: 10.1149/1.2825137
    [12] Wang Q H, Jiao L F, Han Y, et al. CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J Phys Chem C, 2011, 115(16): 8300 doi: 10.1021/jp111626a
    [13] Gu Y, Xu Y, Wang Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl Mater Interfaces, 2013, 5(3): 801 doi: 10.1021/am3023652
    [14] Seo J W, Jang J T, Park S W, et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv Mater, 2010, 20(22): 4269 http://pubs.rsc.org/en/Content/OpenURL/50003391/C3EE42591F/107_1
    [15] Fan Y, Shao H, Wang J, et al. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun, 2011, 47(12): 3469 doi: 10.1039/c0cc05383j
    [16] Zhao L, Tao F Q, Quan Z, et al. Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery. Mater Lett, 2012, 68(1): 28 http://www.sciencedirect.com/science/article/pii/S0167577X11011384
    [17] Du N, Zhang H, Chen J E, et al. Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. J Phys Chem B, 2008, 112(47): 14836 doi: 10.1021/jp8065376
    [18] Hu S, Chen W, Zhou J, et al. Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J Mater Chem A, 2014, 2(21): 7862 doi: 10.1039/c4ta01247j
    [19] Jin R C, Li G H, Zhang Z J, et al. Carbon coated flower like Bi2S3 grown on nickel foam as binder-free electrodes for electrochemical hydrogen and Li-ion storage capacities. Electrochim Acta, 2015, 173: 458 doi: 10.1016/j.electacta.2015.05.021
    [20] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8(10): 3498 doi: 10.1021/nl802558y
    [21] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
    [22] Aboulaich A, Lorret O, Boury B, et al. Surfactant-free organo-soluble silica-titania and silica nanoparticles. Chem Mater, 2009, 21(13): 2577 doi: 10.1021/cm900291p
    [23] Kim Y S, Goodenough J B. Lithium insertion into transition-metal monosulfides: tuning the position of the metal 4s band. J Phys Chem C, 2008, 112(38): 15060 doi: 10.1021/jp8038847
    [24] Wang Q H, Jiao L F, Du H M, et al. Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. J Mater Chem, 2010, 21(2): 327 http://pubs.rsc.org/en/content/articlelanding/2011/jm/c0jm03121f
    [25] Qiu W D, Jiao J Q, Xia J, et al. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chemistry, 2015, 21(11): 4359 doi: 10.1002/chem.201405821
    [26] Xie J, Liu S Y, Cao G S, et al. Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy, 2013, 2(1): 49 doi: 10.1016/j.nanoen.2012.07.010
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  153
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-23
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回