粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能

任澍忻 陈文革 冯涛 欧阳方明

任澍忻, 陈文革, 冯涛, 欧阳方明. 粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能[J]. 粉末冶金技术, 2020, 38(2): 104-112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
引用本文: 任澍忻, 陈文革, 冯涛, 欧阳方明. 粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能[J]. 粉末冶金技术, 2020, 38(2): 104-112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
REN Shu-xin, CHEN Wen-ge, FENG Tao, OUYANG Fang-ming. Microstructure and properties of carbon fiber reinforced Fe-Cu based friction materials prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(2): 104-112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
Citation: REN Shu-xin, CHEN Wen-ge, FENG Tao, OUYANG Fang-ming. Microstructure and properties of carbon fiber reinforced Fe-Cu based friction materials prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(2): 104-112. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.004

粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
基金项目: 

西安市科技计划资助项目 2017080CG/RC043

详细信息
    通讯作者:

    陈文革, E-mail:wgchen001@263.net

  • 中图分类号: TF125.9

Microstructure and properties of carbon fiber reinforced Fe-Cu based friction materials prepared by powder metallurgy

More Information
  • 摘要: 以铁-铜为主组元, 以石墨和MoS2为润滑组元, 以Al2O3、SiC、锆英砂为摩擦组元, 并添加不同质量分数的碳纤维, 将原料混合均匀后经600 MPa冷压成形, 然后在氢气气氛下热压烧结2 h (980℃, 2~3 MPa), 制备得到碳纤维增强铁-铜基摩擦材料, 并对其硬度、相对密度、显微组织、摩擦磨损性能进行研究。结果表明: 铁-铜基体上均匀分布着耐磨的陶瓷相及润滑组元, 铁-铜基体有部分固溶, 碳纤维掩埋在基体和摩擦组元间。当碳纤维质量分数为2%~4%时, 所制备的摩擦材料硬度为HV 102.2~118.6, 相对密度为90.4%~92.6%, 摩擦系数为0.56~0.60, 磨损失重量最小。该摩擦材料的磨损主要为磨粒磨损, 伴随少量粘着磨损。碳纤维可以强化基体, 钉扎摩擦组元, 在摩擦磨损过程中隔断犁沟, 降低材料磨损。
  • 图  1  添加质量分数为4%碳纤维的铁‒铜基摩擦材料X射线衍射图谱

    Figure  1.  XRD diffraction patterns of Fe-Cu based friction material with 4% carbon fiber by mass

    图  2  含不同质量分数碳纤维的铁‒铜基摩擦材料显微组织及能谱分析:(a)0%;(b)2%;(c)4%;(d)6%;(e)A区域能谱图;(f)B区域能谱图;(g)C区域能谱图;(h)D区域能谱图

    Figure  2.  SEM images and EDS analysis of Fe-Cu based friction materials with different carbon fiber content by mass: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) EDS of area A; (f) EDS of area B; (g) EDS of area C; (h) EDS of area D

    图  3  含不同质量分数碳纤维的铁‒铜基摩擦材料的摩擦系数随时间变化曲线:(a)0%;(b)2%;(c)4%;(d)6%

    Figure  3.  Relationship of fiction coefficient and time of Fe-Cu based friction material with different carbon fiber content by mass: (a) 0%; (b) 2%; (c) 4%; (d) 6%

    图  4  含不同质量分数碳纤维的铁‒铜基摩擦材料的磨损曲线

    Figure  4.  Wear curves of Fe-Cu based friction material with different carbon fiber content by mass

    图  5  不同碳纤维含量的铁‒铜基摩擦材料磨损表面形貌及能谱分析:(a)0%;(b)2%;(c)4%;(d)6%;(e)A区域能谱图;(f)B区域能谱图

    Figure  5.  SEM images and EDS analysis of surface wear of Fe-Cu based friction material with different carbon fiber content: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) EDS of area A; (f) EDS of area B

    表  1  铁‒铜基摩擦材料各组分质量分数及粉末粒度

    Table  1.   Mass fraction and particle size of each component in Fe-Cu based friction materials

    原材料 Fe Cu Mo Ni 石墨 MoS2 Al2O3 SiC 锆英砂 Sn
    质量分数/ % 50 20 4 4 8 3 3 4 2 2
    粒度/ 目 200 200 200 200 80 150 200 200 150 200
    下载: 导出CSV

    表  2  实验用碳纤维性能参数

    Table  2.   Performance parameters of carbon fiber used in experiment

    单丝数/ K 抗拉强度/ GPa 弹性模量/ GPa 密度/ (g·cm-3) 单丝直径/ μm
    6 4 240 1.75 7
    下载: 导出CSV

    表  3  含不同质量分数碳纤维的铁‒铜基摩擦材料的相对密度及硬度

    Table  3.   Relative density and hardness of Fe-Cu based friction materials with different carbon fiber content by mass

    碳纤维质量分数/ % 实际密度/ (g·cm-3) 理论密度/ (g·cm-3) 相对密度/ % 孔隙率/ % 硬度,HV
    0 5.08 6.11 83.2 16.8 80.3
    2 5.37 5.80 92.6 7.4 118.6
    4 5.03 5.56 90.4 9.6 102.2
    6 4.60 5.32 86.5 13.5 90.5
    下载: 导出CSV
  • [1] Wang D, Liu Y C. Present situation of friction materials. Adv Ceram, 2007, 28(3): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-XDTC200703009.htm

    王东, 刘英才. 摩擦材料研究进展. 现代技术陶瓷, 2007, 28(3): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-XDTC200703009.htm
    [2] Yang J S. Development of semimetal brake materials. Powder Metall Technol, 2001, 19(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200103009.htm

    杨金生. 半金属制动材料的研制. 粉末冶金技术, 2001, 19(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200103009.htm
    [3] Zhang Q J, Bao J S, Yin Y, et al. Research and development of brake friction materials. Surf Technol, 2016, 45(11): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201611005.htm

    张庆金, 鲍久圣, 阴妍, 等. 制动摩擦材料的研究与发展现状. 表面技术, 2016, 45(11): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201611005.htm
    [4] Liu L J, Li L, Wu Q J, et al. Effects of braking velocity on friction properties of Cu-based powder metallurgy friction material. Powder Metall Technol, 2018, 36(2): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201802001.htm

    刘联军, 李利, 吴其俊, 等. 刹车速度对铜基粉末冶金摩擦材料性能的影响. 粉末冶金技术, 2018, 36(2): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201802001.htm
    [5] Chen W G, Luo Q W, Zhang J, et al. Study of Fe and Cu-based P/M friction materials for automotive brake pads. Powder Metall Technol, 2012, 30(3): 192 doi: 10.3969/j.issn.1001-3784.2012.03.007

    陈文革, 罗启文, 张剑, 等. 汽车刹车片用铁-铜基摩擦材料的研究. 粉末冶金技术, 2012, 30(3): 192 doi: 10.3969/j.issn.1001-3784.2012.03.007
    [6] Dyachkova L N, Feldshtein E E. Microstructures, strength characteristics and wear behavior of the Fe-based P/M composites after sintering or infiltration with Cu-Sn alloy. J Mater Sci Technol, 2015, 31(12): 1226 doi: 10.1016/j.jmst.2015.10.007
    [7] Ferrer C, Pascual M, Busquets D, et al. Tribological study of Fe-Cu-Cr-graphite alloy and cast iron railway brake shoes by pin-on-disc technique. Wear, 2010, 268(5-6): 784 http://www.sciencedirect.com/science/article/pii/S004316480900636X
    [8] Yu X, Guo Z M, Yang J, et al. Effect of Fe content and friction components on properties of copper-based powder metallurgy friction material. Powder Metall Technol, 2014, 32(1): 43

    于潇, 郭志猛, 杨剑, 等. Fe含量及摩擦组元对铜基粉末冶金摩擦材料性能的影响. 粉末冶金技术, 2014, 32(1): 43
    [9] Donnet J B, Bansal R C, Wang M J. Carbon Fibers. 3rd Ed. NewYork: Marcel Dekker, 1990
    [10] Chung D D L. Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon, 2001, 39(8): 1119 http://www.sciencedirect.com/science/article/pii/S0008622300003146
    [11] Fei J, Li H J, Fu Y W, et al. Effect of reinforced fiber on the performance of paper-based friction material. Lubr Eng, 2010, 35(10): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201010004.htm

    费杰, 李贺军, 付业伟, 等. 增强纤维对纸基摩擦材料性能的影响. 润滑与密封, 2010, 35(10): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201010004.htm
    [12] Chen L, Zhang Y D, Fu J. Study on preparation and wear resistance of carbon fiber reinforced iron matrix composite. Hot Working Technol, 2016, 45(20): 133 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201620039.htm

    陈莉, 张永丹, 富佳. 碳纤维增强铁基复合材料的制备及其耐磨性能研究. 热加工工艺, 2016, 45(20): 133 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201620039.htm
    [13] Shen L N, Ruan H L, Ouyang Z Y, et al. Study on iron-based matrix performance of short carbon fiber reinforced diamond bit. Explor Eng Rock Soil Drill Tunnel, 2014, 41(3): 77

    沈立娜, 阮海龙, 欧阳志勇, 等. 短碳纤维增强金刚石钻头铁基胎体性能的研究. 探矿工程(岩土钻掘工程), 2014, 41(3): 77
    [14] Zhang Y D. Study on the Preparation and Properties of Ti/Fe Matrix Composites Reinforced by Carbon Fiber[Dissertation]. Changchun: Changchun University of Technology, 2016

    张永丹. 碳纤维-钛/铁基复合材料的制备及性能研究[学位论文]. 长春: 长春工业大学, 2016
    [15] Zhao Y, Liu R H, Ran X, et al. Preparation and characterization of copper matrix composite reinforced by carbon fiber. Hot Working Technol, 2015, 44(10): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201510044.htm

    赵宇, 刘润红, 冉旭, 等. 碳纤维增强铜基复合材料的制备与表征. 热加工工艺, 2015, 44(10): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201510044.htm
    [16] Li B Q, Zhang F Q, Yang Z, et al. Frictional wear properties of carbon-fiber-reinforced copper-based self-lubricating composites. Min Metall Eng, 2016, 36(5): 107 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201605031.htm

    黎炳前, 张福勤, 杨昭, 等. 碳纤维增强铜基自润滑复合材料的摩擦磨损性能研究. 矿冶工程, 2016, 36(5): 107 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201605031.htm
    [17] Zhou H B, Yao P P, Xiao Y L, et al. Interface formation and wear mechanism between characteristic friction components and base components of Cu-based powder metallurgy friction materials. Chin J Nonferrous Met, 2016, 26(2): 328

    周海滨, 姚萍屏, 肖叶龙, 等. 铜基粉末冶金摩擦材料特征摩擦组元与基体的界面形成及磨损机理. 中国有色金属学报, 2016, 26(2): 328
    [18] Yang M. Effect of Al, Zr on Properties and Microstructure of Fe-18Cu Matrix PM Friction Material[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011

    杨明. Al、Zr对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响[学位论文]. 南京: 南京航空航天大学, 2011
    [19] Song B B, Liu Y D, Fu C Q, et al. Effects of MoS2 on tribological wear properties of Fe-20wt% Cu-based friction materials. Hot Working Technol, 2016, 45(24): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201624013.htm

    宋贝贝, 刘玉德, 付传起, 等. MoS2对Fe-20wt% Cu基摩擦材料摩擦磨损性能的影响. 热加工工艺, 2016, 45(24): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201624013.htm
    [20] Zhang X L, Chen Y, Du S M, et al. Effect of mass fraction ratio of Al2O3 to SiO2 on friction and wear properties of Cu-based powder metallurgy brake material. J Henan Univ Sci Technol Nat Sci, 2017, 38(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201704001.htm

    张学良, 陈跃, 杜三明, 等. Al2O3和SiO2质量分数配比对铜基粉末冶金制动材料摩擦磨损性能的影响. 河南科技大学学报(自然科学版), 2017, 38(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201704001.htm
    [21] Chen B J, Yang Z, Liu J X. Impacts of carbon fibers on performance of copper-based friction materials in powder metallurgy. Foundry Technol, 2017, 38(6): 1304

    陈帮军, 杨茁, 刘建秀. 碳纤维对铜基粉末冶金摩擦材料性能的影响. 铸造技术, 2017, 38(6): 1304
    [22] Ma X L, Ao Y H, Xiao L H, et al. Effect of surface modification of carbon fiber on friction properties of carbon fiber/phenolic resin matrix composite. Chin J Mater Res, 2015, 29(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201502004.htm

    马小龙, 敖玉辉, 肖凌寒, 等. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响. 材料研究学报, 2015, 29(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201502004.htm
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  211
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回