热等静压法制备大尺寸铝基碳化硼复合材料及性能研究

陈锦 熊宁 葛启录 王铁军 蔡静 刘桂荣

陈锦, 熊宁, 葛启录, 王铁军, 蔡静, 刘桂荣. 热等静压法制备大尺寸铝基碳化硼复合材料及性能研究[J]. 粉末冶金技术, 2020, 38(2): 132-137. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
引用本文: 陈锦, 熊宁, 葛启录, 王铁军, 蔡静, 刘桂荣. 热等静压法制备大尺寸铝基碳化硼复合材料及性能研究[J]. 粉末冶金技术, 2020, 38(2): 132-137. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
Citation: CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008

热等静压法制备大尺寸铝基碳化硼复合材料及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
详细信息
    通讯作者:

    陈锦, E-mail:chenjin@atmcn.com

  • 中图分类号: TG146.2

Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing

More Information
  • 摘要: 采用热等静压法制备铝基碳化硼复合材料(Al-B4C)板材, 测试板材的密度和抗拉强度, 并观察复合材料的微观组织和拉伸断口形貌。结果表明, Al-31% B4C (质量分数)板材的尺寸为3 mm×200 mm×5000 mm; Al-31% B4C复合材料的相对密度大于99.69%, 抗拉强度大于300 MPa, 断后延伸率大于3%, B4C颗粒均匀分布在基体中, 并与基体紧密结合; Al-B4C复合材料板材的力学性能符合工程用中子吸收材料的要求。比较含不同质量分数B4C颗粒(10%、15%、20%、25%、30%、31%、35%、40%)的Al-B4C复合材料性能, 当B4C质量分数为10%~40%时, 随基体中B4C颗粒含量的增加, Al-B4C复合材料的密度和相对密度均逐渐降低; 当B4C质量分数为10%~35%时, 随基体中B4C颗粒含量的增加, Al-B4C复合材料的抗拉强度逐渐增大, 断后延伸率逐渐降低。
  • 图  1  Al‒B4C混合粉末扫描电子显微形貌:(a)500倍;(b)1000倍

    Figure  1.  Scanning electron microscope (SEM) images of Al‒B4C mixed powders: (a) ×500; (b) ×1000

    图  2  热等静压后的Al‒B4C待轧坯锭宏观形貌

    Figure  2.  Macro appearance of Al‒B4C billets after hot isostatic pressing

    图  3  Al‒31%B4C板材宏观形貌

    Figure  3.  Macro appearance of Al‒31%B4C flats

    图  4  Al‒31%B4C复合板材取样示意图

    Figure  4.  Sampling diagram of Al‒31%B4C flats

    图  5  Al‒31%B4C板材的密度

    Figure  5.  Density values of the Al–31%B4C plate samples

    图  6  Al‒31%B4C板材试样密度分布

    Figure  6.  Density distribution of Al‒31%B4C plate samples

    图  7  B4C质量分数对Al‒B4C复合材料密度的影响

    Figure  7.  Effect of B4C content by mass on the density of Al‒B4C composites

    图  8  B4C质量分数对Al‒B4C力学性能的影响

    Figure  8.  Effect of B4C content by mass on the mechanical properties of Al‒B4C composites

    图  9  Al‒31%B4C复合材料断口形貌

    Figure  9.  Fracture morphology of Al‒31%B4C composite

    图  10  Al‒31%B4C复合材料金相组织形貌:(a)50倍;(b)200倍

    Figure  10.  Metallographic structure of Al‒31%B4C composites: (a) ×50; (b) ×200

    表  1  实验用6061Al粉的化学成分(质量分数)

    Table  1.   Chemical composition of 6061Al alloy powders used in experiment %

    实验材料 Si Fe Cu Mn Mg Cr Zn Ti Al
    EN AW-6061Al粉标准值 0.40~0.80 ≤0.70 0.15~0.40 ≤0.15 0.8~1.2 0.04~0.35 ≤0.250 ≤0.15 余量
    实验用6061Al粉测量值 0.62 0.13 0.23 <0.01 0.8 0.04 0.027 <0.01 余量
    下载: 导出CSV

    表  2  实验用碳化硼粉的化学成分(质量分数)

    Table  2.   Chemical composition of boron carbide powders used in experiment %

    实验材料 Ca Fe B+C F Cl
    ASTM C750 Type 1碳化硼粉标准值 ≤0.300 ≤1.00 ≥98.00 ≤0.0025 ≤0.0075
    实验用碳化硼粉测量值 0.027 0.03 99.73 ≤0.0015 ≤0.0015
    下载: 导出CSV

    表  3  Al‒B4C复合材料的抗拉强度和断后延伸率

    Table  3.   Tensile strength and elongation of Al‒B4C composites

    B4C质量分数/ % 抗拉强度/ MPa 断后延伸率/ %
    10 177 16.00
    15 201 13.70
    20 254 9.10
    25 291 6.80
    31 307 3.50
    35 356 2.46
    40
    下载: 导出CSV
  • [1] China Nuclear Energy Association. Review of global nuclear power in 2014. China Nucl Ind, 2015(3): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGY201503031.htm

    中国核能行业协会. 2014年全球核电综述. 中国核工业, 2015(3): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGY201503031.htm
    [2] Bi G W, Si S Y, Zhang H J. Spent fuel characteristics analyses for thorium-uraniun breeding recycle in PWRs. Atom Energy Sci Technol, 2012, 46(8): 961 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201208013.htm

    毕光文, 司胜义, 张海俊. 压水堆内钍-铀增殖循环研究——乏燃料特性分析. 原子能科学技术, 2012, 46(8): 961 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201208013.htm
    [3] Alizadeh M. Comparison of nanostructured A1/B4C composite produced by ARB and Al/B4C composite produced by RRB process. Mater Sci Eng A, 2010, 528(2): 578 doi: 10.1016/j.msea.2010.08.093
    [4] Tuncer N, Tasdelen B, Arslan G. Effect of passivation and precipitation hardening on processing and mechanical properties of B4C-A1 composites. Ceram Int, 201l, 37(7): 2861 doi: 10.1016/j.ceramint.2011.05.007
    [5] Carden R A. Fabrication Methods for Metal Matrix Composites: United States Patent, 5722033. 1996-7-1
    [6] Topcu I, Gulsoy H O, Kadioglu N, et al. Processing and mechanical properties of B4C reinforced Al matrix composites. J Alloys Compd, 2009, 482(1-2): 516 doi: 10.1016/j.jallcom.2009.04.065
    [7] Arslan G, Kara F, Turan S. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminum composites. J Eur Ceram Soc, 2003, 23(8): 1243 doi: 10.1016/S0955-2219(02)00304-7
    [8] Khakbiz M, Akhlaghi F. Synthesis and structural characterization of Al-B4C nano-composite powders by mechanical alloying. J Alloys Compd, 2009, 479(1-2): 334 doi: 10.1016/j.jallcom.2008.12.076
    [9] Kim K, Chung S, Hong J. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack. Nucl Eng Technol, 2018, 50(5): 788 doi: 10.1016/j.net.2018.01.017
    [10] Kang P C, Cao Z W, Wu G H, et al. Phase identification of Al-B4C ceramic composites synthesized by reaction hot-press sintering. Int J Refract Met Hard Mater, 2010, 28(2): 297 doi: 10.1016/j.ijrmhm.2009.11.004
    [11] Zhang Z, Fortin K, Charette A, et al. Effect of titanium on microstructure and fluidity of Al-B4C composites. J Mater Sci, 2011, 46: 3176 doi: 10.1007/s10853-010-5201-1
    [12] Li Y L, Zhang P, Gao Z P, et al. Effect of B4C particle size on strength of B4C/6061Al compositions. Mater Sci Eng Powder Metall, 2012, 17(5): 611 doi: 10.3969/j.issn.1673-0224.2012.05.011

    李宇力, 张鹏, 高占平, 等. B4C增强相颗粒粒度对Al基体复合板材强度的影响. 粉末冶金材料科学与工程, 2012, 17(5): 611 doi: 10.3969/j.issn.1673-0224.2012.05.011
    [13] Zhang P, Zhang Z W, Li Y L, et al. Microstructure and mechanical properties of high content B4C-aluminium composites fabricated by hot-pressing sintering. Mater Sci Eng Powder Metall, 2014, 19(1): 95 doi: 10.3969/j.issn.1673-0224.2014.01.016

    张鹏, 张哲维, 李宇力, 等. 热压法制备高含量B4C/铝基复合材料的显微结构和力学性能. 粉末冶金材料科学与工程, 2014, 19(1): 95 doi: 10.3969/j.issn.1673-0224.2014.01.016
    [14] Shen C L, Shi J M, Zhang L, et al. Effect of ball milling technics on B4C-Al composite performance. J Funct Mater, 2011, 42(Suppl 2): 365 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S2044.htm

    沈春雷, 石建敏, 张玲, 等. 球磨工艺对B4C-Al复合粉末性能的影响. 功能材料, 2011, 42(增刊2): 365 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S2044.htm
    [15] Energy Resources International, Inc. Industry Spent Fuel Storage Hand Book. Palo Alto: Electric Power Research Institute, 2010
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  113
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-12
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回