射频等离子体制备球形钽粉及其性能表征

杨坤 汤慧萍 王建 刘楠 杨广宇 贾亮 贾文鹏 支浩

杨坤, 汤慧萍, 王建, 刘楠, 杨广宇, 贾亮, 贾文鹏, 支浩. 射频等离子体制备球形钽粉及其性能表征[J]. 粉末冶金技术, 2020, 38(2): 138-142, 158. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.009
引用本文: 杨坤, 汤慧萍, 王建, 刘楠, 杨广宇, 贾亮, 贾文鹏, 支浩. 射频等离子体制备球形钽粉及其性能表征[J]. 粉末冶金技术, 2020, 38(2): 138-142, 158. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.009
YANG Kun, TANG Hui-ping, WANG Jian, LIU Nan, YANG Guang-yu, JIA Liang, JIA Wen-peng, ZHI Hao. Preparation and characterization of spherical tantalum powder by radio frequency plasma[J]. Powder Metallurgy Technology, 2020, 38(2): 138-142, 158. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.009
Citation: YANG Kun, TANG Hui-ping, WANG Jian, LIU Nan, YANG Guang-yu, JIA Liang, JIA Wen-peng, ZHI Hao. Preparation and characterization of spherical tantalum powder by radio frequency plasma[J]. Powder Metallurgy Technology, 2020, 38(2): 138-142, 158. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.009

射频等离子体制备球形钽粉及其性能表征

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.009
基金项目: 

国家重点研发计划资助 2016YFB1101403

陕西省重点研发计划资助 2017ZDXM-GY-057

详细信息
    通讯作者:

    杨坤, E-mail:yangk029@163.com

  • 中图分类号: TG146.4+16

Preparation and characterization of spherical tantalum powder by radio frequency plasma

More Information
  • 摘要: 采用射频等离子体对不规则状冶金级钽粉进行了球化处理, 研究了粉末供给速率对球化率的影响。结果表明, 当粉末供给速率为10 g·min-1时, 钽粉的球化率可到90%以上; 球化后的钽粉球形度良好、表面光洁, 内部无空心缺陷, 流动性为13.84[s·(50 g)-1], 松装密度从5.87 g/cm3增加到9.35 g/cm3, 达到了增材制造技术的要求; 球化后的粉末杂质元素含量和物相组成没有发生变化。
  • 图  1  等离子球化装置结构原理图

    Figure  1.  Schematic illustration of the radio frequency (RF) plasma spheroidization process

    图  2  不同供给速率球化后钽粉的微观形貌:(a)原始钽粉;(b)10 g·min-1;(c)20 g·min-1;(d)30 g·min-1;(e)40 g·min-1;(f)50 g·min-1

    Figure  2.  SEM images of the spheroidized tantalum powders at different feeding rates: (a) raw powders; (b) 10 g·min-1; (c) 20 g·min-1; (d) 30 g·min-1; (e) 40 g·min-1; (f) 50 g·min-1

    图  3  粉末供给速率对钽粉球化率的影响

    Figure  3.  Influence of feeding rate on the spheroidization efficiency of tantalum powders

    图  4  粉末供给速率对钽粉流动性和松装密度的影响

    Figure  4.  Influence of feeding rate on the flowability and apparent density of tantalum powders

    图  5  球化前后钽粉粒度分布

    Figure  5.  Particle size distributions of tantalum powder before and after spheroidization

    图  6  球化前后钽粉X射线衍射图

    Figure  6.  X-ray diffraction patterns of tantalum powders before and after spheroidization

    图  7  球化后粉末的表面(a)及截面(b)显微形貌图

    Figure  7.  Surface (a) and cross (b) section SEM images of tantalum powders after spheroidization

    表  1  射频等离子球化钽粉的工艺参数

    Table  1.   Processing parameters for RF plasma processing

    中央气体流量(Argon) / (L·min-1) 载气流量(Helium) / (L·min-1) 鞘气流量(Argon) / (L·min-1) 等离子体功率/ kW 反应压力/ kPa
    22 18 57 40 10~15
    下载: 导出CSV

    表  2  球化前后钽粉杂质元素质量分数

    Table  2.   Chemical compositions of impurity elements in tantalum powders before and after spheroidization

    元素 C / ×10-6 O / ×10-6 N / ×10-6 H / ×10-6
    球化前 12 620 49 27
    球化后 13 680 48 28
    下载: 导出CSV
  • [1] Levine B R, Sporer S, Poggie R A, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials, 2006, 27(27): 4671 doi: 10.1016/j.biomaterials.2006.04.041
    [2] Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 2006, 27(13): 2651 doi: 10.1016/j.biomaterials.2005.12.002
    [3] De Martino I, De Santis V, Sculco P K, et al. Long-term clinical and radiographic outcomes of porous tantalum monoblock acetabular component in primary hip arthroplasty: a minimum of 15-year follow-up. J Arthroplasty, 2016, 31(9): S110 doi: 10.1016/j.arth.2015.12.020
    [4] Yang K, Tang H P, Wang J, et al. Research development of standardized and addtively manufactured custom-made porous tantalum implant. Hot Working Technol, 2017, 46(22): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201722003.htm

    杨坤, 汤慧萍, 王建, 等. 标准化和增材制造个性化多孔钽植入体的研究进展. 热加工工艺, 2017, 46(22): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201722003.htm
    [5] Zhang X Y, Fang G, Zhou J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review. Materials, 2017, 10(1): E50 doi: 10.3390/ma10010050
    [6] Tang H P, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM, 2015, 67(3): 555 doi: 10.1007/s11837-015-1300-4
    [7] He J L. The development of world tantalum powder technology. Eng Sci, 2001, 3(12): 85 doi: 10.3969/j.issn.1009-1742.2001.12.015

    何季麟. 世界钽粉生产工艺的发展. 中国工程科学, 2001, 3(12): 85 doi: 10.3969/j.issn.1009-1742.2001.12.015
    [8] Jiang X L, Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Trans Nonferrous Met Soc China, 2006, 16(1): 13 doi: 10.1016/S1003-6326(06)60003-4
    [9] Hou Y B, Zeng K L, Yu Y G, et al. Plasma spheroidization of tungsten powder. Nonferrous Met, 2008, 60(1): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200801010.htm

    侯玉柏, 曾克里, 于月光, 等. 等离子球化钨粉. 有色金属, 2008, 60(1): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200801010.htm
    [10] Harbec D, Gitzhofer F, Tagnit-Hamou A. Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials. Powder Technol, 2011, 214(3): 356 doi: 10.1016/j.powtec.2011.08.031
    [11] Gu Y W, Yap A U J, Cheang P, et al. Spheroidization of glass powders for glass ionomer cements. Biomaterials, 2004, 25(18): 4029 doi: 10.1016/j.biomaterials.2003.10.096
    [12] Wang J J, Hao J J, Guo Z M, et al. Preparation of spherical niobium powder by RF induction plasma. Mater Sci Eng Powder Metall, 2014, 19(3): 361 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201403005.htm

    王建军, 郝俊杰, 郭志猛, 等. 射频等离子体制备球形铌粉. 粉末冶金材料科学与工程, 2014, 19(3): 361 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201403005.htm
    [13] Wang L Z, Liu Y, Chang S. Fabrication of spherical AlSi10Mg powders by radio frequency plasma spheroidization. Metall Mater Trans A, 2016, 47(5): 2444 doi: 10.1007/s11661-016-3384-z
    [14] Yu F C, Zhou X, Wang D Z, et al. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders. Plasma Sci Technol, 2018, 20(1): 014019 doi: 10.1088/2058-6272/aa8e94
    [15] Tong J B, Lu X, Liu C C, et al. Numerical simulation and prediction of radio frequency inductively coupled plasma spheroidization. Appl Therm Eng, 2016, 100: 1198 doi: 10.1016/j.applthermaleng.2016.02.108
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  201
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回