稀土掺杂Sr2MgSi2O7长余辉发光材料的研究进展

王岳 武鑫江 蔡永丰 黄春草 徐自林 沈毅

王岳, 武鑫江, 蔡永丰, 黄春草, 徐自林, 沈毅. 稀土掺杂Sr2MgSi2O7长余辉发光材料的研究进展[J]. 粉末冶金技术, 2020, 38(2): 143-149. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.010
引用本文: 王岳, 武鑫江, 蔡永丰, 黄春草, 徐自林, 沈毅. 稀土掺杂Sr2MgSi2O7长余辉发光材料的研究进展[J]. 粉末冶金技术, 2020, 38(2): 143-149. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.010
WANG Yue, WU Xin-jiang, CAI Yong-feng, HUANG Chun-cao, XU Zi-lin, SHEN Yi. Research progress of rare earth doped Sr2MgSi2O7 long afterglow luminescent materials[J]. Powder Metallurgy Technology, 2020, 38(2): 143-149. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.010
Citation: WANG Yue, WU Xin-jiang, CAI Yong-feng, HUANG Chun-cao, XU Zi-lin, SHEN Yi. Research progress of rare earth doped Sr2MgSi2O7 long afterglow luminescent materials[J]. Powder Metallurgy Technology, 2020, 38(2): 143-149. doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.010

稀土掺杂Sr2MgSi2O7长余辉发光材料的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.010
基金项目: 

国家自然科学基金资助项目 51772099

国家自然科学基金资助项目 51572069

华北理工大学大学生创新创业训练计划资助项目 X2018002

华北理工大学研究生创新项目 2018S06

详细信息
    通讯作者:

    沈毅, E-mail:shenyicyf@126.com

  • 中图分类号: TB321

Research progress of rare earth doped Sr2MgSi2O7 long afterglow luminescent materials

More Information
  • 摘要: 硅酸镁锶(Sr2MgSi2O7)作为目前常用的一种长余辉发光材料基质, 性能稳定, 耐酸碱性能良好。本文介绍了长余辉发光材料的发光原理, 综述了近年来Sr2MgSi2O7长余辉发光材料的主要制备方法以及稀土掺杂Sr2MgSi2O7材料的研究进展, 并对该材料的发展做出了展望。制备Sr2MgSi2O7长余辉发光材料的方法主要包括高温固相法, 溶胶-凝胶法, 化学沉淀法和燃烧合成法, 其中最常用的为高温固相法。通过掺杂稀土离子可以形成具有不同发光特性的长余辉发光材料。稀土掺杂Sr2MgSi2O7材料作为一种储能、节能的长余辉发光材料, 展现出了广阔的发展和应用前景。
  • 图  1  Sr2MgSi2O7: Eu2+, Dy3+的X射线衍射图谱[39]

    Figure  1.  XRD patterns of Sr2MgSi2O7: Eu2+, Dy3+[39]

    图  2  不同烧结温度下Sr2MgSi2O7: Eu2+, Dy3+样品的激发光谱(a)和发射光谱(b)[30]

    Figure  2.  Excitation (a) and emission spectra (b) of Sr2MgSi2O7: Eu2+, Dy3+ at different sintering temperatures[30]

    图  3  Eu2+, Er3+共掺杂Sr2MgSi2O7样品衰减曲线[20]:(a)初始600 s;(b)最后600 s

    Figure  3.  Decay curves of the Eu2+, Er3+ co-doped Sr2MgSi2O7 samples[20]: (a) the initial 600 s; (b) the last 600 s

    图  4  Eu2+掺杂和Eu2+, La3+共掺杂Sr2MgSi2O7热释光曲线[42]

    Figure  4.  TL curves of Eu2+ doped and Eu2+, La3+ co-doped Sr2MgSi2O7[42]

    图  5  Eu2+, Dy3+, Nd3+共掺杂Sr2MgSi2O7样品衰减曲线[17]

    Figure  5.  Decay curves of the Eu2+, Dy3+, Nd3+ co-doped Sr2MgSi2O7 samples[17]

    图  6  Sr2MgSi2O7: Eu2+, Dy3+(a)和Sr2MgSi2O7: Eu2+, Dy3+, Nd3+(b)显微形貌图[44]

    Figure  6.  SEM images of Sr2MgSi2O7: Eu2+, Dy3+ (a) and Sr2MgSi2O7: Eu2+, Dy3+, Nd3+ (b) [44]

  • [1] Xiao Z G, Xiao Z Q. Long Afterglow Silicate Luminescent Material and its Manufacturing Method: US Patent, 6093346. 2000-07-25
    [2] Lin Y H, Tang Z L, Zhang Z T, et al. Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R=Ca, Sr, Ba) phosphors. J Alloys Compd, 2003, 348(1-2): 76 doi: 10.1016/S0925-8388(02)00796-X
    [3] Lin Y H, Tang Z L, Zhang Z T, et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett, 2001, 20(16): 1505 doi: 10.1023/A:1017930630889
    [4] Wu H Y, Hu Y H, Chen L, et al. Investigation on the enhancement and the suppression of persistent luminescence of Re3+ doped Sr2EuMgSi2O7(Re=Dy, Yb). J Alloys Compd, 2011, 509(11): 4304 doi: 10.1016/j.jallcom.2011.01.051
    [5] Carlson S, Hölsä J, Laamanen T, et al. X-ray absorption study of rare earth ions in Sr2MgSi2O7: Eu2+, R3+ persistent luminescence materials. Opt Mater, 2009, 31(12): 1877 doi: 10.1016/j.optmat.2008.12.020
    [6] Kowatari M, Koyama D, Satoh Y, et al. The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation. Nucl Instrum Methods Phys Res: Sect A, 2002, 480(2): 431 http://www.sciencedirect.com/science/article/pii/S0168900201009226
    [7] Xu C N, Watanabe T, Akiyama M, et al. Direct view of stress distribution in solid by mechanoluminescence. Appl Phys Lett, 1999, 74(17): 2414 doi: 10.1063/1.123865
    [8] Le Masne De Chermont Q, Chanéac C, Seguin J, et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS, 2007, 104(22): 9266 doi: 10.1073/pnas.0702427104
    [9] Hölsä J, Aitasalo T, Jungner H, et al. Role of defect states in persistent luminescence materials. J Alloys Compd, 2004, 374(1-2): 56 doi: 10.1016/j.jallcom.2003.11.064
    [10] Brito H F, Hassinen J, Hölsä J, et al. Optical energy storage properties of Sr2MgSi2O7: Eu2+, R3+ persistent luminescence materials. J Therm Anal Calorim, 2011, 105(2): 657 doi: 10.1007/s10973-011-1403-2
    [11] Duan H, Dong Y Z, Huang Y, et al. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor. Phys Lett A, 2016, 380(9-10): 1056 doi: 10.1016/j.physleta.2016.01.001
    [12] Duan H, Dong Y Z, Huang Y, et al. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor. Phys Lett A, 2016, 49(2): 025304 http://www.sciencedirect.com/science/article/pii/S0375960116000025
    [13] Sabbaghalvani A, Moztarzadeh F, Sarabi A. Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu2O3 and Dy2O3. J Lumin, 2005, 115(3): 147 http://www.sciencedirect.com/science/article/pii/S0022231305000876
    [14] Poort S H M, Reijnhoudt H M, van der Kuip H O T, et al. Luminescence of Eu2+in silicate host lattices with alkaline earth ions in a row. J Alloys Compd, 1996, 241(1-2): 75 doi: 10.1016/0925-8388(96)02324-9
    [15] Hai O, Jiang H Y, Xu D, et al. The effect of grain surface on the long afterglow properties of Sr2MgSi2O7: Eu2+, Dy3+. Mater Res Bull, 2016, 76: 358 doi: 10.1016/j.materresbull.2015.12.048
    [16] He L, Jia B L, Che L Y, et al. Preparation and optical properties of afterglow Sr2MgSi2O7: Eu2+, Dy3+ electrospun nanofibers. J Lumin, 2016, 172: 317 doi: 10.1016/j.jlumin.2015.12.012
    [17] Wu H Y, Hu Y H, Wang Y H, et al. Influence on luminescent properties of the Sr2MgSi2O7: Eu2+by Dy3+, Nd3+ co-doping. J Alloys Compd, 2009, 486(1-2): 549 doi: 10.1016/j.jallcom.2009.07.002
    [18] He L, Che L Y, Sun W M, et al. Preparation and properties of long afterglow phosphor SrMgSi2O6: Eu2+, Dy3+. Powder Metall Ind, 2013, 23(6): 12 doi: 10.3969/j.issn.1006-6543.2013.06.003

    何玲, 车莲瑜, 孙卫民, 等. SrMgSi2O6: Eu2+, Dy3+长余辉发光材料的制备及性能. 粉末冶金工业, 2013, 23(6): 12 doi: 10.3969/j.issn.1006-6543.2013.06.003
    [19] Wu H Y, Hu Y H, Wang Y H, et al. Influence on the luminescence properties of the lattice defects in Sr2MgSi2O7: Eu2+, M (M=Dy3+, La3+ or Na1+). J Alloys Compd, 2010, 497(1-2): 330 doi: 10.1016/j.jallcom.2010.03.060
    [20] Wu H Y, Hu Y H, Chen L, et al. Enhancement on the afterglow properties of Sr2MgSi2O7: Eu2+ by Er3+ codoping. Met Powder Rep, 2011, 65(17-18): 2676 http://www.sciencedirect.com/science/article/pii/S0167577X11005982
    [21] Furusho H, Hölsä J, Laamanen T, et al. Probing lattice defects in Sr2MgSi2O7: Eu2+, Dy3+. J Lumin, 2008, 128(5-6): 881 doi: 10.1016/j.jlumin.2007.11.047
    [22] Jiang H Y, Wan H F, Chen W. Synthesizing a long afterglow luminescent materials of Sr2MgSi2O7: Eu2+, Dy3+ by sol-gel methods. J Wuhan Univ Technol, 2005, 7: 17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb200507006
    [23] Jiang H Y, Wan H F, Chen W. Synthesizing a long afterglow luminescent materials of Sr2MgSi2O7: Eu2+, Dy3+ by sol-gel methods. J Wuhan Univ Technol, 2005, 27(7): 17 doi: 10.3321/j.issn:1671-4431.2005.07.006

    姜洪义, 万红峰, 陈伟. 溶胶-凝胶法合成Sr2MgSi2O7: Eu2+, Dy3+长余辉发光材料. 武汉理工大学学报, 2005, 27(7): 17 doi: 10.3321/j.issn:1671-4431.2005.07.006
    [24] Shirakura S, Toda K, Imanari Y, et al. Sol-gel synthesis of long persistent phosphor Sr2MgSi2O7: Eu2+, Dy3+ thin film. J Ceram Soc Jpn, 2005, 113(1319): 484 doi: 10.2109/jcersj.113.484
    [25] Liu X, Zhang X, Zhou Z. Preparation and luminescence properties of patterned SOG/Sr2MgSi2O7: Eu2+, Dy3+ long-persistent luminescence composite thin films by one-step photolithography. Mater Res Bull, 2016, 79: 84 doi: 10.1016/j.materresbull.2016.03.014
    [26] Ji H M, Xie G J, Lv Y, et al. A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7: Eu2+, Dy3+ long afterglow materials by sol-gel method. J Sol-Gel Sci Technol, 2007, 44(2): 133 doi: 10.1007/s10971-007-1614-y
    [27] Pan W, Ning G L, Zhang X, et al. Enhanced luminescent properties of long-persistent Sr2MgSi2O7: Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J Lumin, 2008, 128(12): 1975 doi: 10.1016/j.jlumin.2008.06.009
    [28] Chen X B, Li Y D, Ai P F, et al. Synthesis of blue long-lasting phosphorescent material Sr2MgSi2O7: Eu2+, Dy3+ by coprecipitation method. Chin J Inorg Chem, 2010, 26(1): 79 http://www.cqvip.com/QK/93659X/201001/32659849.html
    [29] Wei X L, Fan J, Zhou X S, et al. Study on Sr2MgSi2O7: Eu2+, Dy3+ long-afterglow luminescent materials via sol-hydrothermal synthesis. Trans Indian Ceram Soc, 2017, 76(1): 50 doi: 10.1080/0371750X.2016.1241162
    [30] Zheng M, Chen X, Lei B, et al. Synthesis and luminescence properties of flower-like Sr2MgSi2O7: Eu2+, Dy3+ phosphor via hydrothermal-homogeneous coprecipitation route. ECS Solid State Lett, 2013, 2(6): 19 doi: 10.1149/2.008306ssl
    [31] Wang H Q, Zhang L, Ma L, et al. A study on combustion synthesis of strontium aluminates: Eu2+ and its luminescence. J Fudan Univ Nat Sic, 1997, 36(1): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB199701010.htm

    王惠琴, 张磊, 马林, 等. 燃烧法快速合成铝酸锶: 铕及其发光性能. 复旦学报(自然科学版), 1997, 36(1): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB199701010.htm
    [32] Fei Q, Chang C K, Mao D L. Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+. J Alloys Compd, 2005, 390(1-2): 133 doi: 10.1016/j.jallcom.2004.06.096
    [33] Sabbaghalvani A, Moztarzadeh F, Sarabi A A. Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu2O3 and Dy2O3. J Lumin, 2005, 115(3-4): 147 doi: 10.1016/j.jlumin.2005.03.009
    [34] Poort S H M, Blasse G. The influence of the host lattice on the luminescence of divalent europium. J Lumin, 1997, 72-74: 247 doi: 10.1016/S0022-2313(96)00360-2
    [35] Zhang X G, Tang X P, Zhang J L, et al. Luminescent properties of Sr2MgSi2O7: Eu as blue phosphor for NUV light-emitting diodes. Powder Technol, 2010, 204(2-3): 263 doi: 10.1016/j.powtec.2010.08.011
    [36] Tam T T H, Hung N D, Lien N T K, et al. Synthesis and optical properties of red/blue-emitting Sr2MgSi2O7: Eu3+/Eu2+ phosphors for white LED. J Sci Adv Mater Devices, 2016, 1(2): 204 doi: 10.1016/j.jsamd.2016.06.009
    [37] Homayoni H, Ma L, Zhang J Y, et al. Synthesis and conjugation of Sr2MgSi2O7: Eu2+, Dy3+ water soluble afterglow nanoparticles for photodynamic activation. Photodiagn Photodyn Ther, 2016, 16: 90 doi: 10.1016/j.pdpdt.2016.08.012
    [38] Liu B, Shi C S, Yin M, et al. The trap states in the Sr2MgSi2O7 and (Sr, Ca) MgSi2O7 long afterglow phosphor activated by Eu2+and Dy3+. J Alloys Compd, 2005, 387(1-2): 65 doi: 10.1016/j.jallcom.2004.06.061
    [39] Shrivastava R, Kaur J. Characterisation and mechanoluminescence studies of Sr2MgSi2O7: Eu2+, Dy3+. J Radiat Res Appl Sci, 2015, 8(2): 201 doi: 10.1016/j.jrras.2015.01.005
    [40] Dorenbos P. Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+, Dy3+. Phys Status Solidi B, 2005, 242(1): R7 doi: 10.1002/pssb.200409080
    [41] Zhai Y Q, You Z J, Liu Y H. Properties of red-emitting phosphors Sr2MgSi2O7: Eu3+ prepared by gel-combustion method assisted by microwave. J Rare Earth, 2012, 30(2): 114 doi: 10.1016/S1002-0721(12)60005-2
    [42] Hassinen J, Hölsä J, Laamanen T, et al. Electronic structure of defects in Sr2MgSi2O7: Eu2+, La3+ persistent luminescence material. J Non-Cryst Solids, 2010, 356(37-40): 2015 doi: 10.1016/j.jnoncrysol.2010.06.035
    [43] Jia D D, Jia W Y, Jia Y. Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+. J Appl Phys, 2007, 101(2): 023520 doi: 10.1063/1.2409767
    [44] Wang X M, Li F F, Zuo G F, et al. Enhanced afterglow properties of Nd3+ co-doped Sr2MgSi2O7: Eu2+, Dy3+ synthesized by sol-gel method. Ceram Int, 2016, 42(16): 19441 doi: 10.1016/j.ceramint.2016.09.051
  • 加载中
图(6)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  137
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 刊出日期:  2021-01-06

目录

    /

    返回文章
    返回