定向分布石墨烯纳米片/Al8030复合材料的低温蠕变性能研究

郭宇明 易丹青 张嘉艺 王斌

郭宇明, 易丹青, 张嘉艺, 王斌. 定向分布石墨烯纳米片/Al8030复合材料的低温蠕变性能研究[J]. 粉末冶金技术, 2020, 38(3): 163-173. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.001
引用本文: 郭宇明, 易丹青, 张嘉艺, 王斌. 定向分布石墨烯纳米片/Al8030复合材料的低温蠕变性能研究[J]. 粉末冶金技术, 2020, 38(3): 163-173. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.001
GUO Yu-ming, YI Dan-qing, ZHANG Jia-yi, WANG Bin. Study on low temperature creep properties of Al8030 composites added by directional distribution of graphene nanoplatelets[J]. Powder Metallurgy Technology, 2020, 38(3): 163-173. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.001
Citation: GUO Yu-ming, YI Dan-qing, ZHANG Jia-yi, WANG Bin. Study on low temperature creep properties of Al8030 composites added by directional distribution of graphene nanoplatelets[J]. Powder Metallurgy Technology, 2020, 38(3): 163-173. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.001

定向分布石墨烯纳米片/Al8030复合材料的低温蠕变性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.001
详细信息
    通讯作者:

    易丹青, E-mail: danqing@csu.edu.cn

  • 中图分类号: TG376.2

Study on low temperature creep properties of Al8030 composites added by directional distribution of graphene nanoplatelets

More Information
  • 摘要: 采用粉末改性和半固态挤压工艺制备了石墨烯纳米片/Al8030复合材料, 其中石墨烯纳米片质量分数为0.5%, 研究了石墨烯纳米片对铝基复合材料显微组织和低温蠕变性能的影响。结果表明: 石墨烯纳米片主要分布于晶界处, 并且具有与挤压方向平行的定向分布特征。复合材料样品在服役条件下的稳态蠕变速率与铝合金基体相比下降超过50%。在90 ℃和50~90MPa实验条件下, 基体的蠕变机制以位错攀移机制为主, 而复合材料的蠕变则由位错滑移和位错攀移机制共同影响; 在120~150 ℃和50~90MPa实验条件下, 基体和复合材料的蠕变均由位错攀移机制和第二相增强机制协同控制, 但石墨烯纳米片的添加使得第二相增强机制对蠕变的控制更明显。
  • 图  1  Al-0.24Fe-Cu三元合金垂直截面相图

    Figure  1.  Vertical cross-section phase diagram of the Al-0.24Fe-Cu ternary alloy

    图  2  蠕变试验样品的形状及尺寸

    Figure  2.  Shape and size of the creep test samples

    图  3  粉末混合前后的场发射扫描电子显微镜图:(a) 原始Al8030粉末;(b) 原始石墨烯纳米片;(c) 混合前改性Al8030粉末;(d) 混合后GNPs/Al8030粉末

    Figure  3.  FESEM images of the powders before and after mixing: (a) the original powders of Al8030;(b) the original GNPs; (c) the modified Al8030 powders before mixing; (d) the GNPs/Al8030 powders after mixing

    图  4  对比样和0.5%GNPs/Al8030复合材料样品场发射扫描电子显微形貌:(a) 对比样横截面;(b) 对比样纵截面;(c) 0.5%GNPs/8030复合材料样横截面;(d) 0.5%GNPs/8030复合材料样纵截面

    Figure  4.  FESEM images of the comparison samples and 0.5%GNPs/Al8030 samples: (a) the cross section of comparison samples; (b) the longitudinal section of comparison samples; (c) the cross section of 0.5%GNPs/Al8030 samples; (d) the longitudinal section of0.5%GNPs/Al8030 samples

    图  5  0.5%GNPs/Al8030复合材料样品横截面电子探针面扫图:(a) 扫描形貌;(b) Cu; (c) Fe; (d) C

    Figure  5.  EPMA area scan of the 0.5%GNPs/Al8030 composites in the cross section: (a) microstructure; (b) Cu; (c) Fe; (d) C

    图  6  0.5%GNPs/Al8030复合材料样品纵截面电子探针面扫图;(a) 扫描形貌;(b) Cu; (c) Fe; (d) C

    Figure  6.  EPMA area scan of the 0.5%GNPs/Al8030 composites in the longitudinal section: (a) microstructure; (b) Cu; (c) Fe; (d) C

    图  7  对比样和0.5%GNPs/Al8030复合材料样品的相对密度

    Figure  7.  Relative density of the comparison samples and the0.5%GNPs/Al8030 composite samples

    图  8  对比试样在不同应力和不同温度条件下的蠕变应变-时间曲线:(a) 50 MPa; (b) 70 MPa; (c) 90 MPa

    Figure  8.  Creep strain-time curve of the comparison samples in different stresses at different temperature conditions: (a) 50 MPa; (b) 70 MPa; (c) 90 MPa

    图  9  0.5%GNPs/Al8030复合材料样品在不同应力和不同温度条件下的蠕变应变-时间曲线:(a) 50 MPa; (b) 70 MPa; (c) 90 MPa

    Figure  9.  Creep strain-time curve of the 0.5%GNPs/8030samples in different stresses at different temperatures: (a) 50 MPa; (b) 70 MPa; (c) 90 MPa

    图  10  两组试样的lnε-lnσ关系曲线:(a) 对比样;(b) 0.5%GNPs/Al8030复合材料

    Figure  10.  lnε-lnσ curves of two group samples: (a) the comparison samples; (b) the 0.5%GNPs/8030 samples

    图  11  两组试样的lnɛ-(1/T)关系曲线:(a) 对比样;(b) 0.5%GNPs/Al8030复合材料

    Figure  11.  lnɛ-(1/T)curves of two group samples: (a) the comparison samples; (b) the 0.5%GNPs/8030 samples

    表  1  8030铝合金的化学成分(质量分数)

    Table  1.   Chemical composition of 8030 aluminum alloy %

    材料 Fe Cu Si Mg Zn B Al
    标准8030铝合金 0.30~0.80 0.15~0.30 0.100 0.050 0.050 0.001~0.040 余量
    实验用8030铝合金粉末 0.67 0.25 0.047 0.001 0.001 0.001 余量
    下载: 导出CSV

    表  2  两组试样在不同应力和不同温度条件下的稳态蠕变速率

    Table  2.   Steady-state creep rate of the two group samples in different stresses at different temperatures

    应力/MPa 温度/ ℃ 稳态蠕变速率/s‒1 稳态蠕变下降/%
    对比试样 0.5%GNPs/8030复合材料样品
    50 90 4.08×10-10 1.47×10-10 64
    120 1.20×10-9 4.26×10-10 65
    150 4.76×10-9 2.30×10-9 52
    70 90 1.38×10-9 6.61×10-10 52
    120 8.51×10-9 3.56×10-9 58
    150 4.22×10-8 2.13×10-8 50
    90 90 5.06×10-9 1.12×10-9 78
    120 7.62×10-8 2.15×10-8 72
    150 3.72×10-6(断) 9.60×10-7 74
    下载: 导出CSV
  • [1] Lu N N, Xu L, Li C Y, et al. Research progress on preparation technology of aluminum matrix composites reinforced by graphene. Powder Metall Technol, 2017, 35(4): 310 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.012

    鲁宁宁, 许磊, 历长云, 等. 石墨烯增强铝基复合材料制备技术研究进展. 粉末冶金技术, 2017, 35(4): 310 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.012
    [2] Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 doi: 10.3969/j.issn.1001-3784.2016.01.002

    高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 doi: 10.3969/j.issn.1001-3784.2016.01.002
    [3] Yang B, Du G X, Cheng F L, et al. Preparation and mechanical properties of graphene reinforced-Al7075 composite by semi-solid sintering. Powder Metall Technol, 2018, 36(4): 303 doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011

    杨斌, 杜更新, 程福来, 等. 半固态烧结制备石墨烯/7075铝基复合材料与性能研究. 粉末冶金技术, 2018, 36(4): 303 doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
    [4] Deng X B, Jiang X Y, Wang B. Effect of Fe and Cu content on microstructure and properties of Al-Fe-Cu alloy for cable. Light Alloy Fabricat Technol, 2016, 44(12): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201612006.htm

    邓显波, 江新洋, 王斌. 铁、铜含量对电缆用Al-Fe-Cu合金组织和性能的影响. 轻合金加工技术, 2016, 44(12): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201612006.htm
    [5] Yan S J, Yang C, Hong Q H, et al. Research of graphene-reinforced aluminum matrix nanocomposites. J Mater Eng, 2014(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201404002.htm

    燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究. 材料工程, 2014(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201404002.htm
    [6] Wang J Y, Li Z Q, Fan G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater, 2012, 66(8): 594 doi: 10.1016/j.scriptamat.2012.01.012
    [7] Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A, 2015, 626: 400 doi: 10.1016/j.msea.2014.12.102
    [8] Zhou W W, Fan Y C, Feng X P, et al. Creation of individual few-layer graphene incorporated in an aluminum matrix. Composites Part A, 2018, 112: 168 doi: 10.1016/j.compositesa.2018.06.008
    [9] Li M, Gao H Y, Liang J M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact, 2018, 140: 172 doi: 10.1016/j.matchar.2018.04.007
    [10] Meng L L, Hu X S, Wang X J, et al. Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction. Mater Sci Eng A, 2018, 733: 414 doi: 10.1016/j.msea.2018.07.056
    [11] Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A, 2018, 713: 269 doi: 10.1016/j.msea.2017.12.080
    [12] Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A, 2018, 711: 633 doi: 10.1016/j.msea.2017.11.040
    [13] Jiang X Y, Zhang Y, Yi D Q, et al. Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Mater Charact, 2017, 130: 181 doi: 10.1016/j.matchar.2017.05.040
    [14] Arshad A, Jabbal M, Yan Y Y, et al. A review on graphene based nanofluids: Preparation, characterization and applications. J Mol Liq, 2019, 279: 444 doi: 10.1016/j.molliq.2019.01.153
    [15] Tian J. Study on Creep Behavior of AZ91D Composites Reinforced by Aluminum Silicate Short Fibers[Dissertation]. Guangzhou: South China University of Technology, 2011

    田君. 硅酸铝短纤维增强AZ91D复合材料蠕变行为的研究[学位论文]. 广州: 华南理工大学, 2011
    [16] Yue S, Deng X B, Zhang J Y, et al. Effect of low temperature Sc micro-alloying on creep behavior of 8xxx series aluminum alloy wires. Trans Mater Heat Treat, 2017, 38(9): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201709006.htm

    岳嵩, 邓显波, 张嘉艺, 等. 低温下Sc微合金化对8xxx系铝合金导线蠕变性能的影响. 材料热处理学报, 2017, 38(9): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201709006.htm
    [17] Yuan G Y, Lü Y Z, Zeng X Q, et al. Influence of Sb microaddition on creep resistance and microstructure of Mg-9Al-0.8Zn alloy. Acta Metall Sinica, 2001, 37(1): 23 doi: 10.3321/j.issn:0412-1961.2001.01.005

    袁广银, 吕宜振, 曾小勤, 等. 添加微量Sb对Mg-9Al-0.8Zn合金蠕变抗力及微观组织的影响. 金属学报, 2001, 37(1): 23 doi: 10.3321/j.issn:0412-1961.2001.01.005
    [18] Khorshidi R, Mahmudi R, Honarbakhsh-Raouf A. Compressive creep behavior of a cast Al-15Mg2Si in situ composite. Mater Sci Eng A, 2016, 668: 112 doi: 10.1016/j.msea.2016.05.058
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  142
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回