锻造温度对含钼粉末热锻合金显微组织及力学性能的影响

孙露 张继峰 邱天旭 申小平

孙露, 张继峰, 邱天旭, 申小平. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响[J]. 粉末冶金技术, 2020, 38(3): 174-182. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
引用本文: 孙露, 张继峰, 邱天旭, 申小平. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响[J]. 粉末冶金技术, 2020, 38(3): 174-182. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
Citation: SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002

锻造温度对含钼粉末热锻合金显微组织及力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
详细信息
    通讯作者:

    申小平, E-mail: xpshen171@163.com

  • 中图分类号: TG142.71

Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum

More Information
  • 摘要: 采用粉末热锻工艺制备Fe-1C-2Cu-xMo (x=0.50, 0.85, 1.46, 质量分数)合金, 分析锻造温度和Mo质量分数对烧结态及锻造态合金密度、显微组织、静态力学性能和动态摩擦性能的影响。结果表明: 锻造工艺能够有效提高材料密度, 锻后合金相对密度可达到98.5%, 锻态合金组织主要由贝氏体、马氏体和残余奥氏体组成。合金硬度随Mo质量分数的增加而提高, 随锻造温度的升高先降低后提高, 1050 ℃锻造Fe-1C-2Cu-1.46Mo合金硬度可达HRB116.38。Mo质量分数和锻造温度共同影响合金横向断裂强度, 1000 ℃锻造Fe-1C-2Cu-0.50Mo合金强度最高可达2608MPa, 合金断裂方式为韧脆混合型断裂。材料动态摩擦性能随Mo质量分数的增加显著提升, 当锻造温度为950 ℃且Mo质量分数为1.46%时, 材料的摩擦系数仅为0.088, 明显低于其他材料且波动较小。
  • 图  1  Mo预合金粉末形貌及元素分布:(a) 粉末形貌;(b) Fe元素分布;(c) Mo元素分布

    Figure  1.  Morphology and element distribution of the Mo prealloyed powders: (a) powder morphology; (b) Fe; (c) Mo

    图  2  1000 ℃锻造态M3合金显微形貌和能谱分析:(a) 显微形貌;(b) 位置1能谱分析;(c) 位置2能谱分析;(d) 位置3能谱分析

    Figure  2.  SEM image and EDS analysis of the M3 alloy samples forged at 1000 ℃: (a) SEM image; (b) EDS analysis at zone 1; (c) EDS analysis at zone 2; (d) EDS analysis at zone 3

    图  3  M3合金试样孔隙分布:(a) 烧结态;(b) 950 ℃锻造态

    Figure  3.  Pore distribution of the M3 alloys: (a) the sintered sample; (b) the forged sample at 950 ℃

    图  4  合金900 ℃锻态组织:(a) M1;(b) M2;(c) M3

    Figure  4.  Microstructures of the alloys forged at 900 ℃: (a) M1;(b) M2;(c) M3

    图  5  M3合金锻造态显微组织:(a) 900 ℃;(b) 950 ℃;(c) 1000 ℃;(d) 1050 ℃

    Figure  5.  Microstructure of the M3 forged at the different temperatures: (a) 900 ℃; (b) 950 ℃; (c) 1000 ℃; (d) 1050 ℃

    图  6  锻造温度对合金硬度的影响

    Figure  6.  Effect of the forging temperature on the hardness of alloys

    图  7  Mo质量分数对锻态合金横向断裂强度的影响

    Figure  7.  Effect of the Mo mass fraction on the TRS of alloys forged at the different temperatures

    图  8  950 ℃锻态合金的断口形貌:(a) M1;(b) M2;(c) M3

    Figure  8.  Fracture morphology of the alloys forged at 950 ℃: (a) M1;(b) M2;(c) M3

    图  9  锻造温度对M3合金摩擦系数的影响:(a) 900 ℃;(b) 950 ℃;(c) 1000 ℃;(d) 1050 ℃

    Figure  9.  Effect of the forging temperature on the friction coefficient of M3 alloys: (a) 900 ℃; (b) 950 ℃; (c) 1000 ℃; (d) 1050 ℃

    图  10  950 ℃锻造金的摩擦系数:(a) M1;(b) M2;(c) M3

    Figure  10.  Friction coefficient of the alloys forged at 950 ℃: (a) M1;(b) M2;(c) M3

    表  1  原料粉体纯度及粒度

    Table  1.   Purity and particle sizes of the raw powders

    原料粉体 纯度(质量分数) /% 粒度/μm
    Mo预合金 ≥99.9% ≤150.0
    Cu ≥99.9% ≤75.0
    石墨 ≥99.9% ≤6.5
    下载: 导出CSV

    表  2  Fe-1C-2Cu-xMo合金化学成分(质量分数)

    Table  2.   Chemical composition of the Fe-1C-2Cu-xMo alloys %

    试样编号 Mo Cu C
    M1 0.50 2.00 1.00
    M2 0.85 2.00 1.00
    M3 1.46 2.00 1.00
    下载: 导出CSV

    表  3  合金烧结态及锻态密度

    Table  3.   Density of the sintered and forged alloys

    成分 烧结态密度/(g·cm‒3) 锻态密度/(g·cm‒3)
    900 ℃ 950 ℃ 1000 ℃ 1050 ℃
    M1 6.50 (82.3%) 7.74 (98.0%) 7.77 (98.4%) 7.76 (98.2%) 7.75 (98.1%)
    M2 6.50 (82.2%) 7.73 (97.7%) 7.76 (98.2%) 7.75 (98.0%) 7.73 (97.7%)
    M3 6.51 (82.2%) 7.73 (97.6%) 7.79 (98.5%) 7.76 (98.0%) 7.75 (97.9%)
    注:括号中为对应的相对密度
    下载: 导出CSV

    表  4  1000 ℃锻造态M3合金元素能谱成分分析

    Table  4.   Composition of the M3 alloy samples forged at 1000 ℃ in EDS analysis

    位置 元素质量分数/%
    Cu Mo
    1 2.28 1.39
    2 2.05 1.35
    3 1.97 1.27
    下载: 导出CSV
  • [1] Wang C L, Jia P H, Li Z X. Mechanical Properties of Powder Forged Low-Alloy Steels. 1st Ed. Freiburg: Verlag Schmid Gmbh, 1986
    [2] Zeng H Z, Li Z Y, Zhang L, et al. Effect of Mn content on the microstructure and mechanical propoties of Fe-Cu-C sintered low-alloy steels. Mater Sci Eng Powder Metall, 2016, 21(4): 658 doi: 10.3969/j.issn.1673-0224.2016.04.022

    曾海卒, 李志友, 张雷, 等. Mn含量对粉末冶金铁碳铜低合金钢组织与力学性能的影响. 粉末冶金材料科学与工程, 2016, 21(4): 658 doi: 10.3969/j.issn.1673-0224.2016.04.022
    [3] Hu L, Xiao Z Y, Fu W C, et al. Effect of manganese content on microstructure and properties of Fe-Cu-Mn-C sintering alloy. Mater Sci Eng Powder Metall, 2013, 18(6): 821 doi: 10.3969/j.issn.1673-0224.2013.06.008

    胡磊, 肖志瑜, 付文超, 等. Mn含量对Fe-Cu-Mn-C系烧结合金组织和性能的影响. 粉末冶金材料科学与工程, 2013, 18(6): 821 doi: 10.3969/j.issn.1673-0224.2013.06.008
    [4] Guo B, Ge C C, Zhang S C, et al. Powder forging techonlogy and its application progress. Powder Metall Ind, 2011, 21(3): 45 doi: 10.3969/j.issn.1006-6543.2011.03.010

    郭彪, 葛昌纯, 张随财, 等. 粉末锻造技术与应用进展. 粉末冶金工业, 2011, 21(3): 45 doi: 10.3969/j.issn.1006-6543.2011.03.010
    [5] Engstrom U, Miligan D, Klekovkin A, et al. Efficient low-alloyed steels for high performance structural applications//Proceedings of the 2005 International Conference on Powder Metallurgy and Particulate Materials. Princeton, 2005: 233
    [6] Zhou Y H, Hu P, Chang T, et al. Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys. J Funct Mater, 2018, 49(1): 01026 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201801006.htm

    周宇航, 胡平, 常恬, 等. 钼合金强韧化方式及机理研究进展. 功能材料, 2018, 49(1): 01026 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201801006.htm
    [7] Šalak A, Selecka M. Manganese in Powder Metallurgy Steels. 1st Ed. London: Cambridge International Science Publishing, 2012
    [8] Chen H Z, Li S L, Wang H, et al. Effect of small amount of Mo addition on microstructure and mechanical properties of Fe-0.5Mn-0.5C sintered steels. Mater Sci Eng Powder Metall, 2014, 19(5): 784 doi: 10.3969/j.issn.1673-0224.2014.05.018

    陈荟竹, 李松林, 王行, 等. 少量Mo添加对Fe-0.5Mn-0.5C烧结钢组织和力学性能的影响. 粉末冶金材料科学与工程, 2014, 19(5): 784 doi: 10.3969/j.issn.1673-0224.2014.05.018
    [9] Bruce L. Development and benefits of prealloyed molybdenum PM steels. Int J Powder Metall, 2016, 52(3): 60 http://smartsearch.nstl.gov.cn/paper_detail.html?id=ffed005e5dc452dd598b0ee863d2de82
    [10] King P, Patel S, Shah S, et al. Lower molybdenum steels for high performance powder metallurgy applications//Advance in Powder Metallurgy and Particulate Materials 2006. Princeton, 2006: 81
    [11] Chen Q L. Research on the Related Factors of the Performance of Powder Hot Forging Parts[Dissertation]. Hefei: Hefei University of Technology, 2013

    陈其玲. 粉末热锻零件性能影响因素研究[学位论文]. 合肥: 合肥工业大学, 2013
    [12] Rathore S S, Salve M M, Dabhade V V. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe-Cu-C alloys. J Alloys Compd, 2015, 649: 988 doi: 10.1016/j.jallcom.2015.07.156
    [13] Shanmugam S, Pandey K S, Thangal S U M, et al. Ring rupture strength and hardness of sintered hot-forged 1.5Mo alloyed carbon steels. J Mater Process Technol, 2009, 209(7): 3426 doi: 10.1016/j.jmatprotec.2008.07.043
    [14] Yang S, Xiao Z Y, Guan H J, et al. Microstructure and mechancial properties of sintered and forged Fe-2Cu-0.5C-0.11S materials. Powder Metall Technol, 2017, 35(1): 23 doi: 10.3969/j.issn.1001-3784.2017.01.004

    杨硕, 肖志瑜, 关航健, 等. 烧结和锻造态Fe-2Cu-0.5C-0.11S材料的组织与力学性能研究. 粉末冶金技术, 2017, 35(1): 23 doi: 10.3969/j.issn.1001-3784.2017.01.004
    [15] Sharif A A. Effect of Re and Al-alloying on mechanical properties and high-temperature oxidation of MoSi2. J Alloys Compd, 2012, 518: 22 doi: 10.1016/j.jallcom.2011.12.082
    [16] Wang X T. Metal Material Science. 1st Ed. Beijing: China Machine Press, 1987

    王笑天. 金属材料学. 1版. 北京: 机械工业出版社, 1987
    [17] Xu Z, Zhao L C. Metal Solid Phase Transition Principle. 1st Ed. Beijing: Science Press, 2004

    徐洲, 赵连城. 金属固态相变原理. 1版. 北京: 科学出版社, 2004
    [18] Lei L L. Research on the Microstructure and Properties of Fe-Cr-Mo Powder Metallurgy Steel[Dissertation]. Changsha: Center South University, 2014

    雷龙林. Fe-Cr-Mo粉末冶金钢组织与性能的研究[学位论文]. 长沙: 中南大学, 2014
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-14
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回