温度对镍基高温合金粉末氧化行为的影响

许文勇 李周 刘玉峰 张利冲 张国庆

许文勇, 李周, 刘玉峰, 张利冲, 张国庆. 温度对镍基高温合金粉末氧化行为的影响[J]. 粉末冶金技术, 2020, 38(3): 192-196. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
引用本文: 许文勇, 李周, 刘玉峰, 张利冲, 张国庆. 温度对镍基高温合金粉末氧化行为的影响[J]. 粉末冶金技术, 2020, 38(3): 192-196. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
XU Wen-yong, LI Zhou, LIU Yu-feng, ZHANG Li-chong, ZHANG Guo-qing. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders[J]. Powder Metallurgy Technology, 2020, 38(3): 192-196. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
Citation: XU Wen-yong, LI Zhou, LIU Yu-feng, ZHANG Li-chong, ZHANG Guo-qing. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders[J]. Powder Metallurgy Technology, 2020, 38(3): 192-196. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004

温度对镍基高温合金粉末氧化行为的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
基金项目: 

国家重点研发计划资助项目 2017YFB0305800

详细信息
    通讯作者:

    许文勇, E-mail: xwybiam@126.com

  • 中图分类号: TF122.5

Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders

More Information
  • 摘要: 通过化学分析、扫描电子显微镜观察、X射线衍射分析及X射线光电子能谱分析等方法, 研究了温度对镍基高温合金粉末氧化行为的影响。结果表明, 室温条件下, 粉末氧含量(质量分数)较低(0.012%), 粉末表面发生部分氧化, 表面存在Ni、Cr、Ti等元素的单质态和以Ni (OH)2、Cr2O3、TiO2为主的氧化物/氢氧化物; 当温度上升至150 ℃, 氧含量增加不明显; 随着温度进一步提高至250 ℃, 粉末氧含量明显增加, 达到0.034%, 粉末表面全部氧化, 表面主要由Ni (OH)2、Cr2O3、TiO2组成。温度对镍基高温合金粉末氧化行为影响显著, 合理控制温度可以获得低氧含量的粉末, 本研究所用镍基高温合金粉末大气条件下最高处理温度为150 ℃。
  • 图  1  不同热处理温度下镍基高温合金粉末的氧含量(质量分数)

    Figure  1.  Oxygen mass fraction of the nickel-based superalloy powders at the different thermal treatment temperatures

    图  2  不同热处理温度下镍基高温合金粉末表面显微形貌:(a) 25 ℃;(b) 150 ℃;(c) 250 ℃

    Figure  2.  Surface microstructure of the nickel-based superalloy powders at the different thermal treatment temperatures: (a) 25 ℃; (b) 150 ℃; (c) 250 ℃

    图  3  不同热处理温度下镍基高温合金粉末的X射线衍射图谱

    Figure  3.  XRD patterns of the nickel-based superalloy powders at the different thermal treatment temperatures

    图  4  镍基高温合金粉末X射线光电子能谱全谱

    Figure  4.  XPS survey spectrum of the nickel-based superalloy powders

    图  5  不同热处理温度下镍基高温合金粉末表面Ni 2p窄能量扫描X射线光电子能谱图

    Figure  5.  XPS narrow scans for Ni 2p peak of the nickel-based superalloy powders at the different thermal treatment temperatures

    图  6  不同热处理温度下镍基高温合金粉末表面Ti 2p窄能量扫描X射线光电子能谱图

    Figure  6.  XPS narrow scans for Ti 2p peak of the nickel-based superalloy powders at the different thermal treatment temperatures

    图  7  不同热处理温度下镍基高温合金粉末表面Cr 2p窄能量扫描X射线光电子能谱图

    Figure  7.  XPS narrow scans for Cr 2p peak of the nickel-based superalloy powders at the different thermal treatment temperatures

    表  1  不同热处理温度下镍基高温合金粉末能谱分析

    Table  1.   EDS analysis of the nickel-based superalloy powders at the different thermal treatment temperatures

    温度/ ℃ 元素质量分数/%
    C O Al Ti Cr Mn Co Ni
    25 5.08 0 2.51 3.10 15.07 0.40 11.79 62.05
    150 6.79 0 2.70 2.77 14.79 0.48 11.70 60.77
    250 7.62 1.27 2.18 2.25 15.22 0.47 11.45 59.54
    下载: 导出CSV
  • [1] Reed R C. The Superalloys Fundamentals and Application. London: Cambridge University Press, 2006
    [2] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000

    黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000
    [3] Reed R C, Mottura A, Crudden D J. Alloys-by-design: towards optimization of compositions of nickel-based superalloys//Proceedings of The 13th International Symposium of Superalloys. Pennsylvania, 2016: 15
    [4] Gessinger G H. Powder Metallurgy of Superalloys. London: Cambridge University Press, 1984
    [5] Zhang J, Lou L H. Basic research in development and application of cast superalloy. Acta Metall Sinica, 2018, 54(11): 1637 doi: 10.11900/0412.1961.2018.00371

    张健, 楼琅洪. 铸造高温合金研发中的应用基础研究. 金属学报, 2018, 54(11): 1637 doi: 10.11900/0412.1961.2018.00371
    [6] Gu Y F, Osada T, Yokokawa T, et al. Development of nickel-cobalt base P/M superalloys for disk applications//Proceedings of The 13th International Symposium of Superalloys. Pennsylvania, 2016: 209
    [7] Raisson G. Evolution of PM nickel base superalloy processes and products. Powder Metall, 2008, 51(1): 10 doi: 10.1179/174329008X286631
    [8] Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Mater China, 2013, 32(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301003.htm

    张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301003.htm
    [9] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [10] Ma W B, Liu G Q, Hu B F, et al. Formation of previous particle boundaries of nickel base PM superalloy FGH96. Acta Metall Sinica, 2013, 49(10): 1248 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201310013.htm

    马文斌, 刘国权, 胡本芙, 等. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理. 金属学报, 2013, 49(10): 1248 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201310013.htm
    [11] Qin Z J, Liu C Z, Wang Z, et al. Formation and microstructure evolution of precipitation on prior particle boundaries in P/M nickel-base superalloys. Chin J Nonferrous Met, 2016, 26(1): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601007.htm

    秦子珺, 刘琛仄, 王子, 等. 镍基粉末高温合金原始颗粒边界形成及组织演化特征. 中国有色金属学报, 2016, 26(1): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601007.htm
    [12] Gao Z J, Zhang G Q, Li Z, et al. Surface segregation and oxidation behavior of superalloy powders fabricated by argon atomization. Mater Sci Forum, 2013, 747-748: 518 http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220130700359916
    [13] Gao Z J, Zhang G Q, Li Z, et al. Effect of size distribution and oxygen content of powder on microstructure of HIPed superalloy FGH96. Chin J Rare Met, 2012, 36(4): 665 doi: 10.3969/j.issn.0258-7076.2012.04.026

    高正江, 张国庆, 李周, 等. 粉末粒度和氧含量对HIP态FGH96合金组织的影响. 稀有金属, 2012, 36(4): 665 doi: 10.3969/j.issn.0258-7076.2012.04.026
    [14] Liu N, Li Z, Zhang G Q, et al. Oxidation characteristics of nickel-based superalloy powders prepared by argon gas atomization. Chin J Rare Met, 2011, 35(4): 481 doi: 10.3969/j.issn.0258-7076.2011.04.002

    刘娜, 李周, 张国庆, 等. 氩气雾化镍基高温合金粉末的氧化特性研究. 稀有金属, 2011, 35(4): 481 doi: 10.3969/j.issn.0258-7076.2011.04.002
    [15] Appa Rao G, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng A, 2006, 435-436: 84 doi: 10.1016/j.msea.2006.07.053
    [16] Xu W Y, Liu Y F, Yuan H, et al. Surface characterization of nickel-base superalloy powder//CMC 2018: Physics and Engineering of Metallic Materials. Xiamen, 2018: 561
    [17] Nesbitt H W, Legrand D, Bancroft G M, et al. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys Chem Miner, 2000, 27: 357 doi: 10.1007/s002690050265
    [18] Watts J F, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES. Chichester: John Wiley & Sons Ltd, 2003
    [19] Chasoglou D, Hryha E, Norell M, et al. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Appl Surf Sci, 2013, 268: 496 doi: 10.1016/j.apsusc.2012.12.155
    [20] Shvab R, Leicht A, Hryha E, et al. Characterization of the virgin and recycled nickel alloy HX powder used for selective laser melting//Proceedings of World PM2016 Congress & Exhibition 2016. Hamburg, 2016: 1692
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  80
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-24
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回