热压烧结原位合成Coss/Co3Mo2Si复合材料

邹二勇 刘济慧 邹欣伟

邹二勇, 刘济慧, 邹欣伟. 热压烧结原位合成Coss/Co3Mo2Si复合材料[J]. 粉末冶金技术, 2020, 38(3): 211-216. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.008
引用本文: 邹二勇, 刘济慧, 邹欣伟. 热压烧结原位合成Coss/Co3Mo2Si复合材料[J]. 粉末冶金技术, 2020, 38(3): 211-216. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.008
ZOU Er-yong, LIU Ji-hui, ZOU Xin-wei. In-situ synthesis of Coss/Co3Mo2Si composite by hot-pressing sintering[J]. Powder Metallurgy Technology, 2020, 38(3): 211-216. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.008
Citation: ZOU Er-yong, LIU Ji-hui, ZOU Xin-wei. In-situ synthesis of Coss/Co3Mo2Si composite by hot-pressing sintering[J]. Powder Metallurgy Technology, 2020, 38(3): 211-216. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.008

热压烧结原位合成Coss/Co3Mo2Si复合材料

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.008
基金项目: 

山西省重点研发计划资助项目 201803D121027

太原科技大学博士科研启动基金资助项目 20162006

详细信息
    通讯作者:

    邹欣伟, E-mail: xwzou@tyust.edu.cn

  • 中图分类号: TG148

In-situ synthesis of Coss/Co3Mo2Si composite by hot-pressing sintering

More Information
  • 摘要: 为优化过渡金属硅化物的中低温脆性, 以金属粉末为原料通过热压烧结制备了Co3Mo2Si增强、Co基固溶体(Coss)增韧Coss/Co3Mo2Si复合材料, 并对其微观组织结构及力学性能进行了研究。结果表明: Coss/Co3Mo2Si复合材料主要由Co3Mo2Si三元金属硅化物相和Coss相组成, 两相均匀分布; Co3Mo2Si三元金属硅化物相质量分数增加材料的硬度升高, 但抗弯强度降低, Coss相质量分数增加材料的相对密度和抗弯强度均升高; 抗弯强度的最大值可由单一Co3Mo2Si相的335.7MPa提高到Coss/Co3Mo2Si复相的756.2MPa。
  • 图  1  1#、2A#和3#烧结试样的X射线衍射图谱

    Figure  1.  XRD patterns of the 1#, 2A#, and 3# sintered samples

    图  2  烧结试样的光学显微镜金相组织形貌:(a) Co3Mo2Si; (b) 1#;(c) 2A#; (d) 3#

    Figure  2.  OM micrographs of the sintered samples: (a) Co3Mo2Si; (b) 1#; (c) 2A#; (d) 3#

    图  3  1#烧结试样的电子探针显微面分析结果:(a) 背散射成分像; (b) Co; (c) Si; (d) Mo

    Figure  3.  EPMA area analysis results of the sintered sample 1#: (a) the backscattering morphology; (b) Co; (c) Si; (d) Mo

    图  4  烧结试样的断口显微形貌:(a) 1#; (b) 2A#; (c) 3#; (d) 2B#; (e) 2C#

    Figure  4.  Fracture morphology of the sintered samples: (a) 1#; (b) 2A#; (c) 3#; (d) 2B#; (e) 2C#

    表  1  Coss/Co3Mo2Si复合材料试样化学成分和烧结参数

    Table  1.   Chemical compositions and sintering parameters of the Coss/Co3Mo2Si composite samples

    试样编号 元素质量分数/% 元素原子数比 球磨时间/h 烧结温度/ ℃ 烧结时间/h 烧结压力/MPa
    Co Mo Si Co: Mo: Si
    Co3Mo2Si 44.56 48.36 7.08 3:2:1 5 1250 1 30
    1# 46.92 46.30 6.78 3.3:2:1 5
    2A# 52.95 41.05 6.00 4.2:2:1 5
    2B# 52.95 41.05 6.00 4.2:2:1 10
    2C# 52.95 41.05 6.00 4.2:2:1 20
    3# 59.13 35.65 5.22 5.4:2:1 5
    下载: 导出CSV

    表  2  烧结试样的力学性能

    Table  2.   Mechanical properties of the sintered Coss/Co3Mo2Si composite samples

    试样编号 Co3Mo2Si质量分数/% Coss质量分数/% 测试密度/(g·cm-3) 相对密度/% 抗弯强度/MPa 硬度, HV
    Co3Mo2Si 100 0 6.97 77.6 335.7 1140
    1# 95.73 4.27 7.04 78.6 364.5 1060
    2A# 84.87 15.13 8.31 93.0 489.6 910
    2B# 84.87 15.13 7.57 84.7 528.8 904
    2C# 84.87 15.13 7.04 78.7 701.3 918
    3# 73.72 26.28 8.75 98.0 756.2 810
    下载: 导出CSV
  • [1] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008

    郭建亭. 高温合金材料学. 北京: 科学出版社, 2008
    [2] Liang J K, Hou X Y, Cui Y, et al. Effect of sintering temperature on microstructures and mechanical properties of Co-based wear-resistant alloy. Powder Metall Technol, 2017, 35(3): 188 doi: 10.19591/j.cnki.cn11-1974/tf.2017.03.005

    梁锦奎, 侯星宇, 崔宇, 等. 烧结温度对钴基耐磨合金微观组织和性能的影响. 粉末冶金技术, 2017, 35(3): 188 doi: 10.19591/j.cnki.cn11-1974/tf.2017.03.005
    [3] Zou X W, Ma Q, Jia J G. Research developments of Laves phase high temperature structural silicides. Mater Rev, 2008, 22(5): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200805023.htm

    邹欣伟, 马勤, 贾建刚. Laves相高温结构硅化物的研究进展. 材料导报, 2008, 22(5): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200805023.htm
    [4] Young K, Ouchi T, Fetcenko M A. Pressure-compositiontemperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys. J Alloys Compd, 2009, 480(2): 428 doi: 10.1016/j.jallcom.2008.12.113
    [5] Lu X D, Wang H M. High-temperature phase stability and tribological properties of laser clad Mo2Ni3Si/NiSi metal silicide coatings. Acta Mater, 2004, 52(18): 5419 doi: 10.1016/j.actamat.2004.08.006
    [6] Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidation mechanism of Nb-Ti-Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347 doi: 10.19591/j.cnki.cn11-1974/tf.2017.05.005

    赵刚, 周小军, 张静, 等. Nb-Ti-Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347 doi: 10.19591/j.cnki.cn11-1974/tf.2017.05.005
    [7] Liu Y, Wang H M. Elevated temperature wear behaviors of a Co-Mo-Si ternary metal silicide alloy. Scr Mater, 2005, 52: 1235 doi: 10.1016/j.scriptamat.2005.03.002
    [8] Liu Y X, Chen X, Yin F C, et al. Microstructure and corrosion resistance in liquid Al bath of Co-Mo-Cr-Si alloys. Chin J Nonferrous Met, 2018, 28(10): 2033 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201810010.htm

    刘永雄, 陈欣, 尹付成, 等. Co-Mo-Cr-Si合金组织及其耐铝液腐蚀性能. 中国有色金属学报, 2018, 28(10): 2033 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201810010.htm
    [9] Xu Y W, Wang H M. Microstructure and wear properties of laser melted γ-Ni/Mo2Ni3Si metal silicide "in situ" composite. Mater Lett, 2007, 61: 412 doi: 10.1016/j.matlet.2006.04.072
    [10] Yan X L, Chen X Q, Grytsiv A, et al. On the ternary Laves phase{Sc, Ti}2M3Si (M=Cr, Mn, Fe, Co, Ni) with MgZn2-type. J Alloys Compd, 2007, 429: 10 doi: 10.1016/j.jallcom.2006.03.086
    [11] Zou X W, Ma Q, Jia J G. In situ preparation of (Cu-Mo)/Mo5Si3 composites by hot-press sintering. Powder Metall Technol, 2008, 26(6): 426 http://pmt.ustb.edu.cn/article/id/fmyjjs200806006

    邹欣伟, 马勤, 贾建刚. 热压原位合成(Cu-Mo)/Mo5Si3复合材料. 粉末冶金技术, 2008, 26(6): 426 http://pmt.ustb.edu.cn/article/id/fmyjjs200806006
    [12] Shi H F, Bao Y N, Liu Y. Effect of scanning speed on microstructure and property of Co-Mo-Si alloy coating prepared by argon arc cladding. Mater Prot, 2018, 51(8): 100 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201808023.htm

    时海芳, 鲍亚楠, 刘忆. 熔覆速度对氩弧熔覆Co-Mo-Si合金涂层组织及性能的影响. 材料保护, 2018, 51(8): 100 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201808023.htm
    [13] Kumar K S, Hazzledine P M. Polytypic transformations in Laves phases. Intermetallics, 2004, 12: 763 doi: 10.1016/j.intermet.2004.02.017
    [14] Brady M P, Liu C T, Zhu J H. Effects of Fe additions on the mechanical properties and oxidation behavior of Cr2Ta Laves phase reinforced Cr. Scr Mater, 2005, 52: 815 doi: 10.1016/j.scriptamat.2005.01.016
    [15] Zhang X H. Study of Stirring Ball Milling of TiH2/SiC Mixed Powders and their Sintering Behavior[Dissertation]. Changsha: Hunan University, 2012

    张小虎. TiH2/SiC复合粉末的搅拌球磨及其烧结行为研究[学位论文]. 长沙: 湖南大学, 2012
    [16] Green D J. An Introduction to the Mechanical Properties of Ceramics. Beijing: Tsinghua University Press, 2003: 238

    Green D J. 陶瓷材料力学性能导论. 北京: 清华大学出版社, 2003: 238
    [17] Liu Y, Wang H M. Microstructure and high-temperature sliding wear property of Coss/Co3Mo2Si metal silicide alloys. Mater Sci Eng A, 2005, 396: 240 doi: 10.1016/j.msea.2005.01.020
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  140
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回