TiB2-HfC陶瓷的高温抗氧化性能

宋金鹏 于成功 高姣姣 吕明

宋金鹏, 于成功, 高姣姣, 吕明. TiB2-HfC陶瓷的高温抗氧化性能[J]. 粉末冶金技术, 2020, 38(3): 217-221. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.009
引用本文: 宋金鹏, 于成功, 高姣姣, 吕明. TiB2-HfC陶瓷的高温抗氧化性能[J]. 粉末冶金技术, 2020, 38(3): 217-221. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.009
SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Oxidation resistance of TiB2-HfC ceramic at high temperature[J]. Powder Metallurgy Technology, 2020, 38(3): 217-221. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.009
Citation: SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Oxidation resistance of TiB2-HfC ceramic at high temperature[J]. Powder Metallurgy Technology, 2020, 38(3): 217-221. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.009

TiB2-HfC陶瓷的高温抗氧化性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.009
基金项目: 

国家自然科学基金资助项目 51875388

国家自然科学基金资助项目 51405326

详细信息
    通讯作者:

    宋金鹏, E-mail: songjinpeng@tyut.edu.cn

  • 中图分类号: TB332

Oxidation resistance of TiB2-HfC ceramic at high temperature

More Information
  • 摘要: 为了研究TiB2-HfC陶瓷的高温抗氧化性能, 分析了TiB2-HfC陶瓷在1100 ℃下分别氧化1、4、7、10 h后的氧化行为; 根据材料氧化后的微观结构, 对陶瓷氧化层进行了划分, 将其分为外氧化层、次氧化层及过渡层。实验结果表明: 外氧化层的氧化物为TiO2、B2O3、HfO2、NiO和CoO; 随着氧化时间的延长, 材料发生了严重氧化, 氧化层逐渐变厚, 材料保有的抗弯强度逐渐减小, 材料的氧化增重与氧化时间呈抛物线规律; 氧化1h后, 材料表面形成了约为12 μm的致密氧化层, 此时材料具有较好的抗氧化性能, 且仍保有较高的抗弯强度, 其值为823.6 MPa。
  • 图  1  THC在1100 ℃下氧化后的X射线衍射图谱

    Figure  1.  XRD of THC after the oxidation at 1100 ℃

    图  2  氧化时间与THC氧化增重间的关系

    Figure  2.  Relationship between the oxidation time and mass gain of THC

    图  3  THC在1100 ℃经不同氧化时间的断口形貌:(a) 1 h; (b) 4 h; (c) 7 h; (d) 10 h

    Figure  3.  Fracture morphologies of THC oxidized at 1100 ℃ for the different times: (a) 1 h; (b) 4 h; (c) 7 h; (d) 10 h

    图  4  THC在1100 ℃经不同氧化时间所保有的抗弯强度

    Figure  4.  Flexural strength of THC oxidized at 1100 ℃ for the different times

  • [1] Song J G, Huang C Z, Zou B, et al. Effects of sintering additives on microstructure and mechanical properties of TiB2-WC ceramic-metal composite tool materials. Int J Refract Met Hard Mater, 2012, 30: 91 doi: 10.1016/j.ijrmhm.2011.07.008
    [2] Singh H, Hayat M, Zhang H Z, et al. Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites. Int J Miner Metall Mater, 2019, 26(7): 915 doi: 10.1007/s12613-019-1797-6
    [3] Zhao C H, Chen Y H, Yi Z C, et al. Effect of TiB2 on the oxidation behavior of Ta-W alloy. Powder Metall Technol, 2019, 37(2): 91 doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002

    赵成会, 陈宇红, 羿舟昌, 等. TiB2对Ta-W合金氧化行为的影响. 粉末冶金技术, 2019, 37(2): 91 doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002
    [4] Song J G, Huang C Z, Lü M, et al. Cutting performance and failure mechanisms of TiB2-based ceramic cutting tools in machining hardened Cr12MoV mold steel. Int J Adv Manuf Technol, 2014, 70: 495 doi: 10.1007/s00170-013-5296-z
    [5] Yang Y F, Zhao G L, Hu M S, et al. Laser-induced oxidation assisted micro milling of spark plasma sintered TiB2-SiC ceramic. Ceram Int, 2019, 45(10): 12780 doi: 10.1016/j.ceramint.2019.03.197
    [6] Huang X X, Sun S C, Tu G F. Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum. J Mater Res Technol, 2020, 9(1): 282 doi: 10.1016/j.jmrt.2019.10.056
    [7] Zhuang L. Effect of TiB2 content on high-temperature oxidation behavior of AlMgB14 composites materials. Mater Prot, 2018, 51(1): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201801013.htm

    庄蕾. TiB2含量对AlMgB14基复合材料抗高温氧化性能的影响. 材料保护, 2018, 51(1): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201801013.htm
    [8] Wu C, Li Y K, Cheng X W, et al. Microstructural evolution and oxidation behavior of TiB2-SiC-B4C composite fabricated by reactive spark plasma sintering. J Alloys Compd, 2018, 765: 158 doi: 10.1016/j.jallcom.2018.06.219
    [9] Murthy T S R Ch, Sonber J K, Vishwanadh B, et al. Densification, characterization and oxidation studies of novel TiB2+EuB6 compounds. J Alloys Compd, 2016, 670: 85 doi: 10.1016/j.jallcom.2016.01.216
    [10] Murthy T S R Ch, Sonber J K, Subramanian C, et al. Densification, characterization and oxidation studies of TiB2-WSi2 composite. Int J Refract Met Hard Mater, 2012, 33: 10 doi: 10.1016/j.ijrmhm.2012.02.002
    [11] Cao G J, Xu H Y, Zheng Z Z, et al. Grain size effect on cyclic oxidation of (TiB2+TiC)/Ni3Al composites. Trans Nonferrous Met Soc China, 2012, 22(7): 1588 doi: 10.1016/S1003-6326(11)61360-5
    [12] Song J P, Xie J C, Lü M, et al. Microstructure and mechanical properties of TiB2-HfC ceramic tool materials. JOM, 2018, 70: 2544 doi: 10.1007/s11837-018-3128-1
    [13] Xie J C, Song J P, Gao J J, et al. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials. Powder Metall Technol, 2019, 37(6): 416 doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003

    谢俊彩, 宋金鹏, 高姣姣, 等. HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响. 粉末冶金技术, 2019, 37(6): 416 doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [14] Xu L, Yang Y, Wang S H, et al. Improved both mechanical and anti-oxidation performances of ZrB2-SiC ceramics with molybdenum disilicide addition. Mater Chem Phys, 2019, 223: 53 doi: 10.1016/j.matchemphys.2018.10.044
    [15] Astapov A N, Pogozhev Yu S, Prokofiev M V, et al. Kinetics and mechanism of high-temperature oxidation of the heterophase ZrSi2-MoSi2-ZrB2 ceramics. Ceram Int, 2019, 45: 6392 doi: 10.1016/j.ceramint.2018.12.126
  • 加载中
图(4)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  77
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回