紧耦合气雾化技术制备选区激光熔化用18Ni300合金粉末的研究

王博亚 卢林 吴文恒 许炯恺 王滨

王博亚, 卢林, 吴文恒, 许炯恺, 王滨. 紧耦合气雾化技术制备选区激光熔化用18Ni300合金粉末的研究[J]. 粉末冶金技术, 2020, 38(3): 222-226. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.010
引用本文: 王博亚, 卢林, 吴文恒, 许炯恺, 王滨. 紧耦合气雾化技术制备选区激光熔化用18Ni300合金粉末的研究[J]. 粉末冶金技术, 2020, 38(3): 222-226. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.010
WANG Bo-ya, LU Lin, WU Wen-heng, XU Jiong-kai, WANG bin. Research on 18Ni300 alloy powders prepared by close-coupled gas atomization technology used for selective laser melting[J]. Powder Metallurgy Technology, 2020, 38(3): 222-226. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.010
Citation: WANG Bo-ya, LU Lin, WU Wen-heng, XU Jiong-kai, WANG bin. Research on 18Ni300 alloy powders prepared by close-coupled gas atomization technology used for selective laser melting[J]. Powder Metallurgy Technology, 2020, 38(3): 222-226. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.010

紧耦合气雾化技术制备选区激光熔化用18Ni300合金粉末的研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.010
基金项目: 

上海材料研究所技术创新项目实施计划资助项目 18SG-01

详细信息
  • 中图分类号: TF123.1

Research on 18Ni300 alloy powders prepared by close-coupled gas atomization technology used for selective laser melting

  • 摘要: 基于紧耦合气雾化技术制备符合选区激光熔化用18Ni300合金粉末, 重点研究了雾化压力对粉末粒度(中值粒径, D50)、粒度分布、球形度、氧含量、流动性和松装密度等特性的影响。结果表明: 雾化压力对上述粉末特性影响显著, 当雾化压力在3.5 MPa到4.5 MPa范围时, 随着压力的提高, 粉末粒度降低、表面形貌改善、流动性变好、松装密度增加。当雾化压力为4.5 MPa时, 所制备的粉末综合特性最优, 粉末粒度(D50)为34 μm, 球形度为0.77, 氧含量为0.02%(质量分数), 流动性为17.4[s·(50g)-1], 松装密度为4.32g·cm-3, 15~53 μm粒径范围粉末收得率为38.1%, 满足选区激光熔化技术对金属粉末性能的要求。
  • 图  1  不同雾化压力制备的粉末粒径累积分布

    Figure  1.  Cumulative distribution of the powder size prepared at the different gas pressures

    图  2  不同工艺制得的粉末形貌:(a) 工艺1; (b) 工艺2; (c) 工艺3; (d) 工艺4

    Figure  2.  Morphology of the powders prepared by the different processes: (a) process 1; (b) process 2; (c) process 3; (d) process 4

    图  3  不同雾化压力下粉末氧、氮含量(质量分数)

    Figure  3.  Oxygen and nitrogen mass fractions of the powders prepared by the different processes

    表  1  18Ni300合金化学成分(质量分数)

    Table  1.   Chemical composition of the 18Ni300 alloy %

    Ni Mo Co Ti Mn C S P O N H
    18.01 4.94 9.01 0.74 0.012 0.001 0.001 0.005 0.0005 0.001 0.00004
    下载: 导出CSV

    表  2  气雾化工艺参数

    Table  2.   Process parameters of the gas atomization

    工艺 金属熔体温度/℃ 雾化压力/MPa
    1 1650 ± 20 3.5
    2 1650 ± 20 4.0
    3 1650 ± 20 4.5
    4 1650 ± 20 5.0
    下载: 导出CSV

    表  3  不同工艺制备的粉末粒径(D50) 与收得率(η)

    Table  3.   Particle size (D50) and yield (η) of the powders prepared by the different processes

    工艺 D50/μm η/%
    1 60.0 28.5
    2 36.5 32.5
    3 34.0 38.1
    4 40.0 35.9
    下载: 导出CSV

    表  4  不同工艺制备粉末的球形度、流动性与松装密度

    Table  4.   Spherical, flowability, and apparent density of the powders prepared by the different processes

    工艺 球形度 流动性/[s·(50 g) -1] 松装密度/(g·cm-3)
    1 0.65 22.3 4.08
    2 0.70 19.5 4.21
    3 0.77 17.4 4.32
    4 0.72 18.6 4.30
    下载: 导出CSV
  • [1] Shi Y S. The industrial application and industrialization development of 3D printing technology. Mach Des Manuf Eng, 2016, 45(2): 11 doi: 10.3969/j.issn.2095-509X.2016.02.002

    史玉升. 3D打印技术的工业应用及产业化发展. 机械设计与制造工程, 2016, 45(2): 11 doi: 10.3969/j.issn.2095-509X.2016.02.002
    [2] Yang E Q. The influence of 3D printing to the development of aviation manufacturing. Aeronaut Sci Technol, 2013(1): 13 doi: 10.3969/j.issn.1007-5453.2013.01.005

    杨恩泉. 3D打印技术对航空制造业发展的影响. 航空科学技术, 2013(1): 13 doi: 10.3969/j.issn.1007-5453.2013.01.005
    [3] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev, 2012, 57(3): 133 doi: 10.1179/1743280411Y.0000000014
    [4] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1 doi: 10.3969/j.issn.1671-5276.2013.04.001

    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1 doi: 10.3969/j.issn.1671-5276.2013.04.001
    [5] Ouyang H W, Chen X, Yu W T, et al. Progress and prospect on the gas atomization. Powder Metall Technol, 2007, 25(1): 53 doi: 10.3321/j.issn:1001-3784.2007.01.013

    欧阳鸿武, 陈欣, 余文焘, 等. 气雾化制粉技术发展历程及展望. 粉末冶金技术, 2007, 25(1): 53 doi: 10.3321/j.issn:1001-3784.2007.01.013
    [6] Liu W S, Peng F, Ma Y Z, et al. Research progress in metal powder production by gas atomization. Mater Rev, 2009, 23(3): 53 doi: 10.3321/j.issn:1005-023X.2009.03.012

    刘文胜, 彭芬, 马运柱, 等. 气雾化法制备金属粉末的研究进展. 材料导报, 2009, 23(3): 53 doi: 10.3321/j.issn:1005-023X.2009.03.012
    [7] Zheng Z, Wang L F, Yan B. Research progress of metal materials for 3D printing. Shanghai Nonferrous Met, 2016, 37(1): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201601012.htm

    郑增, 王联凤, 严彪. 3D打印金属材料研究进展. 上海有色金属, 2016, 37(1): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201601012.htm
    [8] Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009

    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009
    [9] Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001

    吴文恒, 吴凯琦, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001
    [10] National Technical Committee for Standardization of Nonferrous Metals. GB/T 5314-2011 Powders for Powder Metallurgical Purpose: Sample. Beijing: China Standard Press, 2012

    全国有色金属标准化技术委员会. GB/T 5314-2011粉末冶金用粉末: 取样方法. 北京: 中国标准出版社, 2012
    [11] Bouwman A M, Bosma J C, Vonk P, et al. Which shape factor (s) best describe granules?Powder Technol, 2004, 146(1-2): 66 doi: 10.1016/j.powtec.2004.04.044
    [12] National Technical Committee for Standardization of Nonferrous Metals. GB/T 1482-2010 Metallic Powders-Determination of Flow Time by Means of a Calibrated Funnel (Hall Flowmeter). Beijing: China Standard Press, 2011

    全国有色金属标准化技术委员会. GB/T 1482-2010金属粉末流动性的测定标准漏斗法(霍尔流速计). 北京: 中国标准出版社, 2011
    [13] National Technical Committee for Standardization of Nonferrous Metals. GB/T 149.1-2010 Metallic Powders-Determination of Apparent Density: Part 1. Funnal Method. Beijing: China Standard Press, 2012

    全国有色金属标准化技术委员会. GB/T 1479.1-2011金属粉末松装密度的测定第1部分: 漏斗法. 北京: 中国标准出版社, 2012
    [14] Li Q Q. The principle of powder production by the close-coupled gas atomization. Powder Metall Ind, 1999, 9(5): 3 doi: 10.3969/j.issn.1006-6543.1999.05.001

    李清泉. 紧密耦合气体雾化制粉原理. 粉末冶金工业, 1999, 9(5): 3 doi: 10.3969/j.issn.1006-6543.1999.05.001
    [15] Ouyang H W, Huang B Y, Chen X, et al. Filming mechanism of high-pressure gas atomization in state of 'opened' wake. Chin J Nonferrous Met, 2005, 15(7): 1000 doi: 10.3321/j.issn:1004-0609.2005.07.003

    欧阳鸿武, 黄伯云, 陈欣, 等. 开涡状况下紧耦合气雾化的成膜机理. 中国有色金属学报, 2005, 15(7): 1000 doi: 10.3321/j.issn:1004-0609.2005.07.003
    [16] See J B, Johnson G H. Interactions between nitrogen jets and liquid lead and tin streams. Powder Technol, 1978, 21(1): 119 doi: 10.1016/0032-5910(78)80115-6
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  205
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-23
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回