超高转速等离子旋转电极工艺制备钬铜球形粉末的研究

王晨 赵霄昊 马逸驰 王庆相 赖运金 梁书锦

王晨, 赵霄昊, 马逸驰, 王庆相, 赖运金, 梁书锦. 超高转速等离子旋转电极工艺制备钬铜球形粉末的研究[J]. 粉末冶金技术, 2020, 38(3): 227-233. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
引用本文: 王晨, 赵霄昊, 马逸驰, 王庆相, 赖运金, 梁书锦. 超高转速等离子旋转电极工艺制备钬铜球形粉末的研究[J]. 粉末冶金技术, 2020, 38(3): 227-233. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
WANG Chen, ZHAO Xiao-hao, MA Yi-chi, WANG Qing-xiang, LAI Yun-jin, LIANG Shu-jin. Study of the spherical HoCu powders prepared by supreme-speed plasma rotating electrode process[J]. Powder Metallurgy Technology, 2020, 38(3): 227-233. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
Citation: WANG Chen, ZHAO Xiao-hao, MA Yi-chi, WANG Qing-xiang, LAI Yun-jin, LIANG Shu-jin. Study of the spherical HoCu powders prepared by supreme-speed plasma rotating electrode process[J]. Powder Metallurgy Technology, 2020, 38(3): 227-233. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.011

超高转速等离子旋转电极工艺制备钬铜球形粉末的研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
基金项目: 

国家重点研发计划资助项目 2018YFB1106400

详细信息
    通讯作者:

    赵霄昊, E-mail: mouse120@sina.com

  • 中图分类号: TF122

Study of the spherical HoCu powders prepared by supreme-speed plasma rotating electrode process

More Information
  • 摘要: 采用超高转速等离子旋转电极工艺(supreme-speed plasma rotating electrode process, SS-PREP)制备韧性金属间化合物钬铜(HoCu)球形粉末, 粉末粒度在15~106μm之间。利用X射线衍射仪、扫描电子显微镜、能谱分析及光学显微镜分析了SS-PREP钬铜球形粉末的粒度分布、松装密度、振实密度及霍尔流速等粉末特性, 比较了不同试验方法对粒度分布的表征。结果表明, SS-PREP钬铜粉末主要由CsCl结构的RM型B2相构成, 不同粒度的HoCu球形颗粒化学成分基本一致, 随着粉末粒度增大, HoCu球形粉末的非球形颗粒比例呈现下降趋势。
  • 图  1  钬铜合金晶体结构

    Figure  1.  Crystal structure of the HoCu alloys

    图  2  HoCu电极棒形貌:(a) 铝纸真空封装;(b) 电极棒外观形貌

    Figure  2.  Appearance of the HoCu electrode bar: (a) the vacuum packaging by aluminum foil; (b) the macro-morphology

    图  3  超高转速等离子旋转电极设备示意图(a)和实物图(b)

    Figure  3.  Schematic (a) and product (b) drawings of the SS-PREP equipment

    图  4  不同筛分方法得到的HoCu粉末粒度分布(0~150 μm): (a) 激光衍射法;(b) 干筛法;(c) 标尺标定

    Figure  4.  Particle size distribution of the HoCu powders in 0~150 μm characterized by the different test methods: (a) laser diffraction method; (b) dry screening method; (c) scale measurement

    图  5  HoCu粉末X射线衍射分析(CsCl型)

    Figure  5.  X-ray diffraction of the HoCu powders(type CsCl)

    图  6  HoCu粉末不同粒度区间的二次电子像:(a) 0~45 μm; (b) 45~106 μm; (c) 106~150 μm; (d) ~128 μm

    Figure  6.  Secondary electron images of the HoCu powders in the different particle size distribution: (a) 0~45 μm; (b) 45~106 μm; (c) 106~150 μm; (d) ~128 μm

    图  7  HoCu粉末不同粒度区间能谱分析:(a) 0~45 μm; (b) 45~106 μm; (c) 106~150 μm

    Figure  7.  EDS analysis of the HoCu powders in the different particle size distribution: (a) 0~45 μm; (b) 45~106 μm; (c) 106~150 μm

    图  8  HoCu粉末光学显微金相组织:(a) 低倍;(b) 高倍

    Figure  8.  Optical microstructure of the HoCu powders: (a) low magnification; (b) high magnification

    表  1  HoCu电极棒与粉末化学成分(质量分数)

    Table  1.   Chemical composition of the HoCu bars and powders by mass %

    元素 Ho Al Fe Si O Cu
    HoCu电极棒 72.3 < 0.002 < 0.015 < 0.01 0.09 余量
    SS-PREP制备的HoCu球形粉末 72.0 < 0.002 < 0.015 < 0.01 0.12 余量
    下载: 导出CSV

    表  2  SS-PREP HoCu粉末性能

    Table  2.   Properties of the SS-PREP HoCu powders

    粉末粒度/μm 霍尔流速/[(50 g)·s-1] 松装密度/(g·cm-3) 振实密度/(g·cm-3) 安息角
    0~150 11.1 5.51 5.79
    下载: 导出CSV

    表  3  不同筛分方法得到的HoCu粉末粒度分布(0~150 μm)

    Table  3.   Particle size distribution of the HoCu powders in0~150 μm characterized by the different test methods

    粒度/μm 干筛法粒度分布(质量分数)/% 激光衍射法粒度分布(体积分数)/%
    中航工业540厂 美国泰勒 德国莱驰 丹东百特
    0~45 12.01 11.47 9.47 6.96
    45~53 6.75 7.47 6.75 13.90
    53~63 13.41 12.39 12.37 16.83
    63~75 12.24 18.25 13.71 16.82
    75~90 42.46 36.50 40.38 19.67
    90~106 11.50 13.45 16.58 13.10
    106~150 0.20 0.47 0.74 12.18
    下载: 导出CSV
  • [1] Cao G H, Oertel C G, Schaarschuch R, et al. TEM study of the martensitic phases in the ductile DyCu and YCu intermetallic compounds. Acta Mater, 2017, 132: 345 doi: 10.1016/j.actamat.2017.05.005
    [2] Gschneidner Jr K A, Ji M, Wang C Z, et al. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Mater, 2009, 57(19): 5876 doi: 10.1016/j.actamat.2009.08.012
    [3] Petit L, Szotek Z, Jackson J, et al. Magnetic properties of Gd intermetallics. J Magn Magn Mater, 2018, 448: 9 doi: 10.1016/j.jmmm.2017.04.005
    [4] Mudryk Y, Paudyal D, Pathak A K, et al. Balancing structural distortions via competing 4f and itinerant interactions: A case of polymorphism in magnetocaloric HoCo2. J Mater Chem C, 2016, 4(20): 4521 doi: 10.1039/C6TC00867D
    [5] Morris J R, Ye Y Y, Lee Y B, et al. Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Mater, 2004, 52(16): 4849 doi: 10.1016/j.actamat.2004.06.050
    [6] Gschneidner Jr K, Russell A, Pecharsky A, et al. A family of ductile intermetallic compounds. Nat Mater, 2003, 2(9): 587 doi: 10.1038/nmat958
    [7] Wu Y R, Hu W Y, Han S C. First-principles calculation of the elastic constants, the electronic density of states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh. Phys B: Condens Matter, 2008, 403(19-20): 3792 doi: 10.1016/j.physb.2008.07.009
    [8] Blanco J A, Espeso J I, García Soldevilla J, et al. Magnetic structure of GdCu through the martensitic structural transformation: A neutron-diffraction study. Phys Rev B, 1999, 59(1): 512 doi: 10.1103/PhysRevB.59.512
    [9] Ozols A, Sirkin H R, Vicente E E. Segregation in stellite powders produced by the plasma rotating electrode process. Mater Sci Eng A, 1999, 262(1-2): 64 doi: 10.1016/S0921-5093(98)01021-1
    [10] Wosch E, Feldhaus S, El Gammal T. Rapid solidification of steel droplets in plasma rotating electrode process. ISIJ Int, 1995, 35(6): 764 doi: 10.2355/isijinternational.35.764
    [11] Yin J G, Chen G, Zhao S Y, et al. Titanium-tantalum alloy powder produced by the plasma rotating electrode process (PREP). Key Eng Mater, 2018, 770: 18 doi: 10.4028/www.scientific.net/KEM.770.18
    [12] Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, et al. The structure and properties of pre-alloyed NiAl-Cr (Co, Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. J Mater Res Technol, 2018, 7(4): 461 doi: 10.1016/j.jmrt.2018.01.003
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  128
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 刊出日期:  2020-06-27

目录

    /

    返回文章
    返回