粉末注射成形制备薄壁Al2O3–B4C环形芯块

马亮 杨静 王继平 许奎

马亮, 杨静, 王继平, 许奎. 粉末注射成形制备薄壁Al2O3–B4C环形芯块[J]. 粉末冶金技术, 2022, 40(3): 211-217. doi: 10.19591/j.cnki.cn11-1974/tf.2020010003
引用本文: 马亮, 杨静, 王继平, 许奎. 粉末注射成形制备薄壁Al2O3–B4C环形芯块[J]. 粉末冶金技术, 2022, 40(3): 211-217. doi: 10.19591/j.cnki.cn11-1974/tf.2020010003
MA Liang, YANG Jing, WANG Ji-ping, XU Kui. Preparation of Al2O3–B4C thin-wall tube pellet by powder injection molding[J]. Powder Metallurgy Technology, 2022, 40(3): 211-217. doi: 10.19591/j.cnki.cn11-1974/tf.2020010003
Citation: MA Liang, YANG Jing, WANG Ji-ping, XU Kui. Preparation of Al2O3–B4C thin-wall tube pellet by powder injection molding[J]. Powder Metallurgy Technology, 2022, 40(3): 211-217. doi: 10.19591/j.cnki.cn11-1974/tf.2020010003

粉末注射成形制备薄壁Al2O3–B4C环形芯块

doi: 10.19591/j.cnki.cn11-1974/tf.2020010003
详细信息
    通讯作者:

    E-mail: 917295581@qq.com

  • 中图分类号: TQ133.4

Preparation of Al2O3–B4C thin-wall tube pellet by powder injection molding

More Information
  • 摘要: 使用多组元蜡基粘结剂,通过粉末注射成形工艺,结合溶剂脱脂和热脱脂,成功烧结制备出壁厚为0.7 mm的近净尺寸环形Al2O3–B4C薄壁管。结果表明,当石蜡占粘结剂质量分数45%时,喂料具有较低的黏度和较好的抗弯强度;当固相体积分数为58%时,喂料在保证低黏度的前提下具有良好性能。当烧结温度在1550 ℃至1650 ℃范围内时,芯块相对密度及抗弯强度随温度上升而增高;当烧结温度达到1650 ℃时,芯块的密度及强度有所下降,芯块密度随B4C粒度增大而增大,抗弯强度随粒度增大先增大后减小。
  • 图  1  溶剂脱脂坯的热重分析曲线

    Figure  1.  TGA curve of the solvent degreased billet

    图  2  热脱脂升温制度

    Figure  2.  Heating program of the thermal debinding

    图  3  喂料黏度与石蜡质量分数关系

    Figure  3.  Relationship between the feedstock viscosity and the PW mass fraction

    图  4  生坯抗弯强度与石蜡质量分数关系

    Figure  4.  Relationship between the bending strength of green billet and the PW mass fraction

    图  5  不同固相体积分数喂料黏度与剪切速率关系

    Figure  5.  Relationship between the feedstock viscosity with the solid phase in the different volume fraction and the shear rate

    图  6  生坯抗弯强度与固相体积分数关系

    Figure  6.  Relationship between the green billet bending strength the and the volume fraction of solid phase

    图  7  Al2O3–B4C芯块相对密度和孔隙度随烧结温度变化

    Figure  7.  Effect of sintering temperature on the relative density and porosity of the Al2O3–B4C pellets

    图  8  Al2O3–B4C芯块抗弯强度随烧结温度变化

    Figure  8.  Effect of sintering temperature on the bending strength of the Al2O3–B4C pellets

    图  9  不同烧结温度下Al2O3–B4C芯块的断面扫面电子显微形貌:(a)1550 ℃;(b)1600 ℃;(c)1650 ℃;(d)1700 ℃

    Figure  9.  Fracture surface SEM images of the Al2O3–B4C pellets at different sintering temperatures: (a) 1550 ℃; (b) 1600 ℃; (c) 1650 ℃; (d) 1700 ℃

    图  10  不同烧结温度下Al2O3–B4C芯块的X射线衍射图谱

    Figure  10.  XRD patterns of the Al2O3–B4C pellets at different sintering temperatures

    图  11  1700℃烧结Al2O3–B4C芯块断面能谱面扫描:(a)B、C、Al、O;(b)B

    Figure  11.  Fracture surface EDS images of the Al2O3–B4C pellets sintered at 1700 ℃: (a) B、C、Al、O; (b) B

    图  12  环形Al2O3–B4C生坯及烧结芯块

    Figure  12.  Annular Al2O3–B4C green billets and sintered pellets

    图  13  B4C粒径对Al2O3–B4C芯块烧结密度和孔隙度的影响

    Figure  13.  Effect of B4C particle diameter on the relative density and porosity of the Al2O3–B4C pellets

    图  14  添加不同粒径B4C的Al2O3–B4C芯块烧结后断面扫描电子显微形貌:(a)0.5 μm;(b)5.0 μm;(c)20.0 μm;(d)40.0 μm

    Figure  14.  Fracture surface SEM images of the Al2O3–B4C pellets with the different B4C particle diameters: (a) 0.5 μm; (b) 5.0 μm; (c) 20.0 μm; (d) 40.0 μm

    图  15  B4C粒径对Al2O3–B4C芯块抗弯强度的影响

    Figure  15.  Effect of the B4C particle diameter on the bending strength of the Al2O3–B4C pellets

  • [1] Choe J, Shin H C, Lee D. New burnable absorber for long-cycle low boron operation of PWRs. Ann Nucl Energy, 2016, 88: 272 doi: 10.1016/j.anucene.2015.11.011
    [2] Huang J H, Xing H, Cheng P D. Characteristics of some new type burnable poison and its application prospect in China. Atom Energy Sci Technol, 1998, 32(1): 90

    黄锦华, 邢辉, 程平东. 几种新型可燃毒物的特性以及在我国的应用前景. 原子能科学技术, 1998, 32(1): 90
    [3] O’ Leary P M, Pitts M L. Effects of burnable absorbers on PWR spent nuclear fuel // Office of Scientific & Technical Information Technical Reports. Nevada: Yucca Mountain Project, 2000
    [4] Xie M L, Chen Y Q, Yu L, et al. Analysis of burnup characteristics of IFBA/WABA burnable poison element, Nucl Sci Eng, 2016, 36(3): 404

    谢明亮, 陈玉清, 于雷, 等. IFBA/WABA可燃毒物元件的燃耗特性分析. 核科学与工程, 2016, 36(3): 404
    [5] Radford K C. Neutron Absorber Pellets with Modified Microstructure: United States Patent, 4474728. 1984-10-02
    [6] Huang H W, Wang X M, Yang J, et al. Preparation of Al2O3/B4C burnable poison pellet by aqueous gelcasting. J Mater Sci Eng, 2010, 28(6): 862
    [7] Gonzalez-Julian J, Classen L, Bram M, et al. Near net shaping of monolithic and composite MAX phases by injection molding. J Am Ceram Soc, 2016, 99: 3210 doi: 10.1111/jace.14466
    [8] Qin M L, Lu H F, Wu H Y, et al, Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952
    [9] Han J S, Gal C W, Kim J H, et al. Fabrication of high-aspect-ratio micro piezoelectric array by powder injection molding. Ceram Int, 2016, 42(8): 9475 doi: 10.1016/j.ceramint.2016.03.011
    [10] Wu Q P, Luo Z, Deng Z H, et al, Fabrication of diamond whiskers by powder injection molding. Int J Refract Met Hard Mater, 2018, 74: 114
    [11] Park J M, Han J S, Gal C W, et al. Fabrication of micro-sized piezoelectric structure using powder injection molding with separated mold system. Ceram Int, 2018, 44(11): 12709 doi: 10.1016/j.ceramint.2018.04.073
    [12] De Freitas Daudt N, Bram M, Barbosa A P C, et al. Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment. J Mater Proc Technol, 2017, 239: 202 doi: 10.1016/j.jmatprotec.2016.08.022
    [13] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217
    [14] Jiang X C. Application of ultrafine metal powder injection moulding on tungsten components in fusion devices. Powder Metall Technol, 2018, 36(4): 279

    蒋香草. 超细金属粉末注射成形在聚变装置钨零部件中的应用. 粉末冶金技术, 2018, 36(4): 279
    [15] Huang H W, Wang X M, Yang J, et al. Research on the sintering property of Al2O3/B4C pellet. Powder Metall Technol, 2011, 29(3): 190

    黄华伟, 王晓敏, 杨静, 等. Al2O3/B4C复合材料性能的研究. 粉末冶金技术, 2011, 29(3): 190
    [16] Liu Y H, Yin S, Zhang W J, et al. Thermodynamic analysis of the self-propagation high-temperature synthesis Al2O3/B4C composite. Scr Mater, 1998, 39: 1237 doi: 10.1016/S1359-6462(98)00304-2
    [17] Huang D S, Wu Y C. Sintering behavior of B4C–dispersed Al2O3 pellet. J Cent South Inst Miner Metall, 1989, 20(1): 59

    黄栋生, 吴义成. Al2O3–B4C弥散芯块材料的烧结行为. 中南矿冶学院学报, 1989, 20(1): 59
    [18] Radford K C, Carlson W C. Burnable Neutron Absorbers: United States Patent, 4826230. 1989-05-02
    [19] Radford K C. Sintering Al2O3–B4C ceramics. J Mater Sci, 1983, 18: 669 doi: 10.1007/BF00745564
  • 加载中
图(15)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  312
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回