增材制造用金属粉末爆炸敏感性研究

孙思衡 孙艳 贾存锋 王会杰 方云锋 庞磊

孙思衡, 孙艳, 贾存锋, 王会杰, 方云锋, 庞磊. 增材制造用金属粉末爆炸敏感性研究[J]. 粉末冶金技术, 2020, 38(4): 249-256. doi: 10.19591/j.cnki.cn11-1974/tf.2020010009
引用本文: 孙思衡, 孙艳, 贾存锋, 王会杰, 方云锋, 庞磊. 增材制造用金属粉末爆炸敏感性研究[J]. 粉末冶金技术, 2020, 38(4): 249-256. doi: 10.19591/j.cnki.cn11-1974/tf.2020010009
SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. doi: 10.19591/j.cnki.cn11-1974/tf.2020010009
Citation: SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. doi: 10.19591/j.cnki.cn11-1974/tf.2020010009

增材制造用金属粉末爆炸敏感性研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020010009
基金项目: 

北京市科技新星计划资助项目 Z181100006218092

北京市优秀人才培养资助青年拔尖个人项目 2016000026833ZK05

详细信息
    通讯作者:

    庞磊, E-mail: pang@bipt.edu.cn

  • 中图分类号: TF122;X932

Study on the explosion sensitivity of metal powders used in additive manufacturing

More Information
  • 摘要: 针对粉尘云最小着火能量(minimum ignition energy, MIE)、粉尘云最低着火温度(minimum ignition temperature of dust cloud, MITC)和粉尘层最低着火温度(minimum ignition temperature of dust layer, MITL)等参数, 开展了针对增材制造用金属粉末爆炸敏感性及影响因素的研究。结果表明, 镍合金粉末和不锈钢粉末爆炸敏感性较低, 而钛合金粉末的敏感程度略高于铝合金粉末, 八种粉末的爆炸敏感程度排序为: TA15>TC4>AlSi10Mg>316L>GH4169>GH3536>GH3625/304L。镍合金粉末和不锈钢粉末均不能被点燃; 钛合金、铝合金粉末的MIE和MITC均随粉尘浓度的升高呈先降低后升高的趋势, 而随喷尘压力的升高呈先降低后升高的趋势。
  • 图  1  1.2 L Hartmann管装置示意图

    Figure  1.  Schematic diagram of the 1.2 L Hartmann tube device

    图  2  Godbert-Greenwald恒温炉装置示意图

    Figure  2.  Schematic diagram of the Godbert-Greenwald constant temperature furnace device

    图  3  粉尘层最低着火温度装置示意图

    Figure  3.  Installation schematic diagram of the minimum ignition temperature of dust layer

    图  4  粉尘云质量浓度对TC4、TA15和Al Si10Mg粉末MIE的影响

    Figure  4.  Effect of the dust cloud mass concentration on the MIE of TC4, TA15, and AlSi10Mg powders

    图  5  喷尘压力对TC4、TA15和Al Si10Mg粉末MIE的影响

    Figure  5.  Effect of the dust spraying pressure on the MIE of TC4, TA15, and AlSi10Mg powders

    图  6  粉尘云质量浓度对TC4、TA15和Al Si10Mg粉末MITC的影响

    Figure  6.  Effect of the dust cloud mass concentration on the MITCof TC4, TA15, and AlSi10Mg powders

    图  7  喷尘压力对TC4、TA15和AlSi10Mg粉末MITC的影响

    Figure  7.  Effect of the dust spraying pressure on the MITC of TC4, TA15, and AlSi10Mg powders

    图  8  TC4、TA15、Al Si10Mg粉末敏感性差异

    Figure  8.  Sensitivity analysis of TC4, TA15, and Al Mg10Si powders

    表  1  试验用粉末化学成分及粒度

    Table  1.   Chemical composition and particle size of powders used in the experiment

    粉末类别 粉末牌号 化学成分(质量分数) 中位径/μm
    钛合金 TC4 铁≤0.30%,碳≤0.10%,氮≤0.05%,氢≤0.015%,氧≤0.20%,铝5.5%~6.8%,钒3.5%~4.5%,钛余量 38.66
    TA15 钒≤2.3%,铝≤6.9%,锆≤2%,锰≤1.7%,钛余量 32.52
    铝合金 AlSi10Mg 硅9.0%~11%,锌≤0.10%,铁≤0.55%,镍≤0.05%,锰≤0.45%,钛≤0.15%,镁0.2%~0.45%,铝余量 33.41
    镍合金 GH4169 镍50%~55%,铬17%~21%,钴≤1%,碳≤0.08%,锰≤0.35%,硅≤0.35%,硫≤0.015%,铜≤0.35%,铝0.2%~0.8%,钛≤0.65%,铁余量 31.80
    GH3536 碳≤0.03%,硅≤0.08%,锰≤0.50%,磷≤0.04%,硫≤0.02%,铬22%~24%,钼15%~17%,铁≤3.0%,铝≤0.50%,铜1.3%~1.9%,镍余量 30.80
    GH3625 铬20%~30%,铁≤5%,铌3.15%~4.15%,钼8%~10%,钴≤1%,碳≤0.1%,锰≤0.5%,硅≤0.5%,硫≤0.015%,磷≤0.015%,铜≤0.07%,铝≤0.4%,钛≤0.4%,镍余量 27.42
    不锈钢 316L 碳≤0.03%,硅≤1%,锰≤2.00%,硫≤0.030%,磷≤0.045%,铬16.00%~18.00%,镍10.00%~14.00%,钼2.00%~3.00%,铁余量 38.91
    304L 碳≤0.03%,硅≤1.0%,锰≤2.0%,铬18.0%~20.0%,镍9.0%~12.0%,硫≤0.03%,磷≤0.045%,铁余量 36.76
    下载: 导出CSV

    表  2  GH4169、GH3536和316L粉末MITC实验数据

    Table  2.   MITC experiment data of the GH4169, GH3536, and316L powders

    粉末牌号 粉末质量浓度/ (kg·m-3) 喷尘压力/MPa 粉尘云最低着火温度/℃
    GH4169 4.444 0.04 900
    GH3536 4.444 0.04 950
    316L 3.333 0.03 860
    下载: 导出CSV

    表  3  试验用金属粉末MITL数据

    Table  3.   MITL data of the metal powders used in experiment

    粉末牌号 粉尘层厚度/mm 热表面温度/℃ 粉尘层温度/℃ 实验结果
    TC4 5 380 476 着火
    TA15 5 380 458 着火
    AlSi10Mg 5 420 462 着火
    GH4169 5 450 408 未着火
    GH3536 5 450 386 未着火
    GH3625 5 450 403 未着火
    316L 5 450 383 未着火
    304L 5 450 391 未着火
    下载: 导出CSV

    表  4  TC4、TA15和AlSi10Mg粉末的MITC与MITL对比

    Table  4.   MITC and MITL comparison of the TC4, TA15, and Al Si10Mg powders

    粉末牌号 MITC/℃ MITL/℃ MITL下的粉尘层温度/℃ 粉尘层温度能否可作为点火源
    TC4 460 380 476
    TA15 430 380 458
    AlSi10Mg 680 420 462
    下载: 导出CSV

    表  5  TC4、TA15和AlSi10Mg粉末MIE的最敏感条件

    Table  5.   Most sensitive conditions for the MIE of TC4, TA15, and AlSi10Mg powders

    粉末牌号 质量浓度/(kg·m-3) 喷尘压力/MPa 最小着火能量/mJ
    TC4 1.667 0.3 80
    TA15 1.667 0.3 20
    AlSi10Mg 1.667 0.2 80
    下载: 导出CSV

    表  6  TC4、TA15和Al Si10Mg粉末粉尘MITC的最敏感条件

    Table  6.   Most sensitive conditions for the MITC of TC4, TA15, and AlSi10Mg powders

    粉末牌号 质量浓度/(kg·m-3) 喷尘压力/MPa 粉尘云最低着火温度/℃
    TC4 5.556 0.04 460
    TA15 5.556 0.04 430
    AlSi10Mg 4.444 0.03 680
    下载: 导出CSV
  • [1] Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm

    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm
    [2] Hu T P, Gao L M, Yang H N. Application of nondestructive testing techniques on additive manufacturing in aerospace fields. Aeronaut Manuf Technol, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm

    胡婷萍, 高丽敏, 杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展. 航空制造技术, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm
    [3] Fang X, Dong J F. Application of additive manufacturing technology in bone defects. Chin J Tissue Eng Res, 2019, 23(18): 2915 doi: 10.3969/j.issn.2095-4344.1706

    方旭, 董军峰. 增材制造技术在骨缺损修复治疗中的应用. 中国组织工程研究, 2019, 23(18): 2915 doi: 10.3969/j.issn.2095-4344.1706
    [4] Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res, 2019, 9(3): 179 doi: 10.1016/j.jobcr.2019.04.004
    [5] Moses Oyesola, Khumbulani Mpofu, Ntombi Mathe. A techno-economic analytical approach of laser-based additive manufacturing processes for aerospace application. Procedia Manuf, 2019, 35: 155 doi: 10.1016/j.promfg.2019.05.019
    [6] Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B, 2018, 143: 172 doi: 10.1016/j.compositesb.2018.02.012
    [7] Cheng Y W, Guan H J, Li B, et al. Characteristics and applications of metal powders for 3D printing. Mater Rev, 2017, 31(Suppl 1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm

    程玉婉, 关航健, 李博, 等. 金属3D打印技术及其专用粉末特征与应用. 材料导报, 2017, 31(增刊1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm
    [8] Zhang Y J, Chen Y. Research on the application of metal additive manufacturing technology. Powder Metall Ind, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm

    张阳军, 陈英. 金属材料增材制造技术的应用研究进展. 粉末冶金工业, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm
    [9] Zong G S, Zhao H. Technology and application of metal 3D printing. Powder Metall Ind, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm

    宗贵升, 赵浩. 金属增材制造技术工艺及应用. 粉末冶金工业, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm
    [10] Chen J J, Hu L S, Hu S Q, et al. Study on the minimum ignition energy and inhibition technology of titanium dust cloud. Fire Sci Technol, 2015, 34(5): 566 doi: 10.3969/j.issn.1009-0029.2015.05.004

    陈金健, 胡立双, 胡双启, 等. 钛粉尘云最小点火能及抑制技术研究. 消防科学与技术, 2015, 34(5): 566 doi: 10.3969/j.issn.1009-0029.2015.05.004
    [11] Dong H P. The Explosion Parameters and Explosion Risk Evaluation of Titanuium Powder[Dissertation]. Nanning: Guangxi University, 2018

    董海佩. 钛粉的爆炸参数及爆炸危险性评价[学位论文]. 南宁: 广西大学, 2018
    [12] Nifuku M, Koyanaka S, Ohya H, et al. Ignitability characteristics of aluminum and magnesium dusts that are generated during the shredding of post-consumer wastes. J Loss Prev Process Ind, 2007, 20(4): 322 http://www.sciencedirect.com/science/article/pii/S0950423007000587
    [13] Wang Y G. Discussion on the explosion characteristics of aluminum dust and explosion prevention countermeasure of aluminum powder site. Fire Sci Technol, 2017, 36(6): 850 doi: 10.3969/j.issn.1009-0029.2017.06.043

    王以革. 铝粉爆炸特性与涉铝粉场所防爆对策探讨. 消防科学与技术, 2017, 36(6): 850 doi: 10.3969/j.issn.1009-0029.2017.06.043
    [14] Zhong Y P, Xu D, Li G, et al. Measurement of minimum ignition temperature for magnesium dust cloud. Explos Shock Waves, 2009, 29(4): 429 doi: 10.3321/j.issn:1001-1455.2009.04.017

    钟英鹏, 徐冬, 李刚, 等. 镁粉尘云最低着火温度的实验测试. 爆炸与冲击, 2009, 29(4): 429 doi: 10.3321/j.issn:1001-1455.2009.04.017
    [15] Ye Y M, Liang J, Jiang H Y J, et al. Research progress on Mg dust combustion explosion. Fire Sci Technol, 2019, 38(7): 921 doi: 10.3969/j.issn.1009-0029.2019.07.005

    叶亚明, 梁峻, 江湖一佳, 等. 镁粉尘燃烧爆炸研究进展. 消防科学与技术, 2019, 38(7): 921 doi: 10.3969/j.issn.1009-0029.2019.07.005
    [16] Wang X F. Research of Monlinear Forecast on Minimum Ignition Energy and Minimum Ignition Temperature of Mg-Al Alloy Dust[Dissertation]. Taiyuan: North University of China, 2016

    王霞飞. 镁铝合金粉最低着火温度及最小点火能的非线性预测[学位论文]. 太原: 中北大学, 2016
    [17] Wang Q H, Sun Y L, Zhang Z J, et al. Ignition and explosion characteristics of micron-scale aluminum-silicon alloy powder. J Loss Prev Process Ind, 2019, 62(3): 902 http://www.sciencedirect.com/science/article/pii/S0950423019302645
    [18] EnvSafe Co., Ltd. Digital platform of dust explosion research[J/OL]. EnvSafe Co., Ltd(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/

    沈阳因斯福环保安全科技有限公司. 粉尘爆炸研究数字化平台[J/OL]. 沈阳因斯福环保安全科技有限公司(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/
    [19] Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009

    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009
    [20] Zhao J, Lü L X, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a near α TA15 titanium alloy during hot deformation based on crystal plasticity method. J Mater Sci Technol, 2020, 38: 125 doi: 10.1016/j.jmst.2019.07.051
    [21] Wang X Q, Chou K. The effects of stress relieving heat treatment on the microstructure and residual stress of Inconel 718 fabricated by laser metal powder bed fusion additive manufacturing process. J Manuf Processes, 2019, 48: 154 doi: 10.1016/j.jmapro.2019.10.027
    [22] Wang D J, Li H, Zheng W. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering. J Mater Sci Technol, 2020, 37: 46 doi: 10.1016/j.jmst.2019.07.037
    [23] Wang X X, Zhan M, Gao P F, et al. Micromechanical behaviour of TA15 alloy cylindrical parts processed by multi-pass flow forming. Mater Sci Eng A, 2019, 737: 328 http://www.sciencedirect.com/science/article/pii/S0921509318312681
    [24] Tong T, Yu Y, Song Z W. Study on effects of 3D printing process parameters on corrosion resistance of TC4 dental implant materials. Hot Working Technol, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm

    童彤, 于燕, 宋子威. 3D打印工艺参数对TC4牙植体材料耐蚀性能的研究. 热加工工艺, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm
    [25] Liu H J, Zhang Z M, Xu J, et al. Study on hot deformation behavior and constitutive model of SPSed TC4 titanimu alloy. J Plast Eng, 2019, 26(6): 263 doi: 10.3969/j.issn.1007-2012.2019.06.037

    刘海军, 张治民, 徐健, 等. 等离子烧结态TC4钛合金热变形行为及本构模型研究. 塑性工程学报, 2019, 26(6): 263 doi: 10.3969/j.issn.1007-2012.2019.06.037
    [26] State Bureau of Technology Supervision. GB16428-1996 Determination of the Minimum Ignition Energy of Dust Cloud. Beijing: Standards Press of China, 1997

    国家技术监督局. GB16428-1996粉尘云最小着火能量测定方法. 北京: 中国标准出版社, 1997
    [27] State Bureau of Technology Supervision. GB16429-1996 Determination of the Minimum Ignition Temperature of Dust Cloud. Beijing: Standards Press of China, 1997

    国家技术监督局. GB16429-1996粉尘云最低着火温度测定方法. 北京: 中国标准出版社, 1997
    [28] Standardization Administration of the People's Republic of China. GB16430-2018 Determination of the Minimum Ignition Temperature of Dust Layer. Beijing: Standards Press of China, 2019

    中国国家标准化管理委员会. GB16430-2018粉尘层最低着火温度测定方法. 北京: 中国标准出版社, 2019
    [29] Standardization Administration of the People's Republic of China. GB150-2011 Pressure Vessels. Beijing: Standards Press of China, 2012

    中国国家标准化管理委员会. GB150-2011压力容器. 北京: 中国标准出版社, 2012
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  225
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 刊出日期:  2020-08-27

目录

    /

    返回文章
    返回